

 et discipline ou spécialité

 Jury :

le

Institut Supérieur de l’Aéronautique et de l’Espace

Antoine AUGER

vendredi 20 avril 2018

Qualité des Observations pour les systèmes Sensor Webs : de la théorie à la
pratique

Quality of Observation within Sensor Web systems: from theory to practice

ED MITT : Réseaux, télécom, système et architecture

Équipe d'accueil ISAE-ONERA MOIS

MmeMyriam LAMOLLE Professeur Université Paris 8 - Présidente
M. Ernesto EXPOSITO Professeur Université de Pau - Co-directeur de thèse
Mme Isabelle GUERIN-LASSOUS Professeur Université Lyon 1- Rapporteur

M. Emmanuel LOCHIN Professeur ISAE-SUPAERO - Directeur de thèse
M. Sherali ZEADALLY Professeur University of Kentucky - Rapporteur

M. Emmanuel LOCHIN (directeur de thèse)
M. Ernesto EXPOSITO (co-directeur de thèse)

This page was intentionally left blank.

To Odette and Fernand, my beloved grandparents.

This page was intentionally left blank.

“Success consists of going from failure to failure without loss of enthusiasm.”

- Winston Churchill

“Try not to become a man of success, but rather try to become a man of value.”

- Albert Einstein

Acknowledgments

I would like to express my deepest gratitude to everyone who supported me and helped me to
complete this Ph.D. thesis.

First, I would like to thank my advisor Ernesto Exposito for offering me the opportunity to
do a Ph.D. thesis with him in April 2014. Even today, I still remember that specific day when
he called me to briefly explain what was the thesis topic. Thanks for your careful supervision,
your support and for being always available when I needed it despite your busy schedule. I will
continue to apply your advice and all the redaction tips (the famous why and what for method)
that you gave me during this thesis. Also, thanks for our numerous meetings (including the
ones at restaurants while eating chipirons) that helped me a lot in developing new ideas,
improving my work and becoming a more complete researcher.

My deepest thanks to my co-advisor Emmanuel Lochin who joined my thesis supervision
in 2015. Thank you for your enthusiasm and for your interest in my research work. Thanks
for our discussions (of good quality of course) and for all the administrative tasks that you
took care of for me. The fact that you provided me both material and financial support really
helped me to complete my thesis in a peaceful atmosphere. Thanks for always believing in me
and for finding the budget to send me to New York, Canada, Washington, Singapore. . . I am
really glad that we are continuing to work a bit together on this R&T for the CNES. Another
project that you offered me, thank you!

I cannot forget Patrick Senac, my very first adviser, who had to leave as he was asked to
take more responsibilities. Thank you for your careful supervision at ENSICA and for making
me discover opportunistic and peer-to-peer networking.

I am also very grateful to all the members of my Ph.D. commission: Prof. Isabelle Guérin
Lassous, Prof. Sherali Zeadally and Prof. Myriam Lamolle. Thanks for taking the time to review
my manuscript and improve it with your remarks and comments. I particularly enjoyed the
Q&A session and our discussions at the end of my defense.

Thanks to my coauthors Victor and Gwilherm, our first accepted paper really put me on
the right track for the future ones. A special thanks to Victor for all the help and for being there
at the beginning where I needed the most to be mentored. Thanks also to Khanh and Florian
with whom I have investigated information dissemination within opportunistic networks at
the beginning of this thesis.

vi

Thanks to all my friends at ISAE Lab. Bastien for bringing Ratafia to life, Jonathan for
his Bitcoin initiation, Frédéric for being my office-mate, Henrick and his Haskell, Anaïs and
her Android apps, Ahmed for being my very first office-mate at ENSICA, Doriane for her
“raccoonness”, Cyril for his joie de vivre, Eyal for his reading recommendations, Yann for all his
4TL stories, Guillaume for our philosophical thoughts and Clément for his water-coolness. I
would like to also thank Gwilherm, Karine, Victor, Rami, Lucien, Tuan, Ahlem, Tanguy, Fabrice,
Jérôme and Odile. To all, thanks for our daily breaks, discussions, giggles, restaurants, parties,
well for all activities that we did together!

Thanks to all my friends at TéSA, my new Lab. Adrien, Barbara, Lorenzo, Romain, Charles
Hugo, Julien, Simone, Victor, Quentin, Selma, Raoul, Sylvain, Oumaima, Philippe, Serge,
Jacques, Corinne, Jean-Yves and Isabelle.

I must not forget my other non-academic friends. I will not hazard to mention all of them
but I am sure that they will recognize themselves. Many thanks to them too.

I am more than grateful to my parents Christine and Jean-Pierre for their unconditional
support. Thank you to my brother Martin, I will continue to ask you legal advice from time to
time. To all my family, thank you for being there. You cannot imagine how you helped me to
complete this adventure. I love you all, even you Pépette.

Last but not the least, a huge thank you to my girlfriend Hélène. Thank you for your endless
patience, support and love. Thanks for your proofreading work and for listening my numerous
defense practices (“We live in a World of sensors. . . ”), you are my favorite audience! Thanks for
cheering me up so many times. I love you so much.

Finally, I would like to thank the Direction Générale de l’Armement (DGA) and the Occi-
tanie region for founding this thesis.

Toulouse, April 2018

vii

This page was intentionally left blank.

Abstract

First defined by the NASA in 2000, the Sensor Web vision refers to the addition of a middleware
layer between sensors and applications. More recently, novel paradigms such as the Internet
of Things (IoT) have revolutionized the Sensing field and brought new research challenges to
light. Considered for a time, the traditional network Quality of Service (QoS) has shown to be
insufficient to precisely characterize consumer needs within sensor-based systems. This trend
has become confirmed while more and more systems are now data-centric, processing sensor
observations in order to generate added-value services to their consumers. Consequently, a set
of new challenges including integration, Quality of Observation (QoO) and system adaptation
needs to be addressed to enable the development of modern Sensor Webs capable of operating
in complex and heterogeneous environments such as the IoT.

The aim of this thesis is to promote QoO-aware Adaptive Sensor Web Systems (QASWS) as a
novel generation of middlewares able to cope with previous identified challenges. With respect
to challenges that relate to integration, we extended the initial Sensor Web paradigm to be
able to consider several kinds of sensors (physical, virtual, logical) and observation levels (Raw
Data, Information, Knowledge). These distinctions aim to mirror current sensor, data and
application heterogeneity. Regarding QoO, we proposed to express and assess it thanks to
the definition of metrics. In order to have a more meaningful characterization and more
interoperable attributes, we took advantage of semantics and provided a custom ontology
called QoOonto based on the W3C SSN standard. As a result, each observation request can be
seen as a Service Level Agreement (SLA) that may contain additional QoO constraints. In order
to meet these SLAs, we envisioned observation’s pipeline processing where domain-specific
experts could incrementally develop additional mechanisms. Our QoOonto ontology can be
used to characterize the service offered by these pipelines, which provides a great modularity
while enabling reusability and composition. Finally, to have flexible Sensor Webs able to keep
meeting consumer needs over time, we used a MAPE-K adaptation control loop from the
Autonomic Computing paradigm in order to decompose the different decisions required to
enable both resource-based and QoO-based adaptation while providing valuable feedback to
consumers.

This thesis mainly proposes two original contributions. The first contribution is a generic
framework for the development of QASWS. Composed of several resources, this framework
covers main development phases (design, implementation, deployment, usage) and is pri-
marily intended for researchers that would like to conceive their own Sensor Web solution.

ix

The second contribution is an integration platform for QoO Assessment as a Service (iQAS).
Complimentary of our generic framework, iQAS is a working prototype that gives us the op-
portunity to introduce important technical choices while justifying their relevance with regard
to the implementation of the QASWS vision.

We evaluated both contributions from several perspectives. Despite some trade-offs
between latency, throughput and observation size that can be explained by some of our
implementation choices, iQAS performances are more than acceptable for a first prototype
locally deployed. Regarding practical use cases of iQAS, we introduced three deployment
scenarios that show how QoO may help to provide a better overall service to end consumers.
In that direction, we focused on specific QoO attributes tailored for each use case: observation
accuracy within Smart Cities, observation rate for virtual sensors pertaining to the Web of
Things and freshness when observations are collected in a peer-to-peer decentralized fashion
within post-disaster areas.

Keywords: Sensor Webs, Internet of Things, sensors, Quality of Observation, generic
framework, integration platform.

x

Résumé

Définie pour la première fois par la NASA en 2000, la notion de Sensor Web correspond à
l’ajout d’une couche middleware entre les capteurs et les applications. Plus récemment,
de nouveaux paradigmes tels que l’Internet des Objets (IoT) ont révolutionné le domaine
des capteurs et introduit de nouvelles problématiques de recherche. Envisagée pendant un
temps, la traditionnelle Qualité de Service (QoS) réseau a depuis montré ses limites lorsqu’il
s’agissait de caractériser précisément les besoins utilisateurs dans les systèmes basés sur des
capteurs. Cette tendance se confirme alors même que de plus en plus de systèmes traitent
les observations reçues des capteurs afin de fournir des services à forte valeur ajoutée à
leurs utilisateurs. Par conséquent, de nouveaux enjeux en termes d’intégration, de Qualité
des Observations (QoO) ou d’adaptation système doivent être relevés afin de permettre le
développement de nouveaux Sensor Webs capables de fonctionner dans des environnements
complexes et hétérogènes tels que l’IoT.

Le but de cette thèse est de promouvoir la notion de QoO dans les Sensor Webs adaptat-
ifs (QASWS) et de développer une nouvelle génération de middleware pour capteurs capa-
bles de surmonter les trois défis précédemment identifiés. En ce qui concerne l’intégration,
nous avons étendu le paradigme initial des Sensor Webs afin de pouvoir prendre en compte
plusieurs types de capteurs ainsi que plusieurs niveaux d’observations. En ce qui concerne la
QoO, nous avons proposé de l’exprimer grâce à la définition de métriques. Afin d’avoir des
attributs plus interopérables, nous avons proposé notre propre ontologie QoOnto basée sur
le standard SSN du W3C. Par conséquent, chaque requête relative à des observations peut
être vue comme un contrat pouvant contenir ou non des contraintes additionnelles en termes
de QoO. Afin de satisfaire ces différents contrats, nous avons imaginé le passage des observa-
tions au travers d’une succession d’étapes de transformation (pipeline) où des mécanismes
supplémentaires pourraient être développés par des spécialistes du domaine de manière
incrémentale. Finalement, afin d’assurer une continuité de service, nous avons utilisé une
boucle d’adaptation MAPE-K issue de l’Autonomic Computing pour fournir une adaptation
basée sur les ressources et la QoO tout en renvoyant des informations de rétrocontrôle aux
utilisateurs.

Cette thèse propose principalement deux contributions originales. La première contribu-
tion est un framework générique pour le développement de solutions dîtes QASWS. Composé
de plusieurs ressources, ce framework couvre les principales étapes du cycle de développe-
ment et est destiné à tout chercheur désireux de concevoir sa propre solution Sensor Web.

xi

La deuxième contribution est une plateforme d’intégration pour l’évaluation de la QoO à
la demande (iQAS). Complémentaire de notre framework générique, iQAS est un prototype
fonctionnel qui nous permet de justifier certains choix techniques lors de l’implémentation
de solutions QASWS.

Nous avons évalué chacune de nos contributions de plusieurs manières. En dépit de
certains compromis entre la latence, le débit et la taille des observations pouvant être ex-
pliqués par certains de nos choix d’implémentation, les performances de iQAS sont plus que
satisfaisantes pour un premier prototype déployé en local. Concernant les cas d’utilisation de
iQAS, nous avons introduit trois scénarios de déploiement qui montrent comment la notion
de QoO peut aider à améliorer le service global fourni aux utilisateurs finaux. À cette occasion,
nous nous sommes concentrés sur des métriques de QoO adaptées et spécifiquement définies
pour chacun de nos cas d’étude : la précision des observations dans les villes intelligentes,
la fréquence des observations reçues pour le Web of Things et l’âge des observations lorsque
ces dernières sont collectées pair à pair de manière décentralisée dans des environnements
sinistrés.

Mots-clefs : Sensor Webs, Internet des Objets, capteurs, Qualité des Observations, frame-
work générique, plateforme d’intégration.

xii

List of Publications

International Journals

[1] A. Auger, E. Exposito, and E. Lochin. Survey on Quality of Observation within Sensor Web
Systems. IET Wireless Sensor Systems, 7:163–177(14), December 2017. ISSN 2043-6386.
URL http://dx.doi.org/10.1049/iet-wss.2017.0008

International Conferences

[2] A. Auger, E. Exposito, and E. Lochin. Towards the Internet of Everything: Deployment
Scenarios for a QoO-aware Integration Platform. In IEEE 4th World Forum on Internet of
Things (WF-IoT 2018), pages 504–509, Singapore, Singapore, 2018

[3] A. Auger, E. Exposito, and E. Lochin. Sensor Observation Streams Within Cloud-based
IoT Platforms: Challenges and Directions. In 20th ICIN Conference Innovations in
Clouds, Internet and Networks, pages 177–184, Paris, FR, 2017. URL https://doi.org/
10.1109/ICIN.2017.7899407

[4] A. Auger, E. Exposito, and E. Lochin. iQAS: an Integration Platform for QoI Assessment
as a Service for Smart Cities. In IEEE 3rd World Forum on Internet of Things (WF-IoT
2016), pages 88–93, Reston, VA, USA, 2017. URL https://doi.org/10.1109/WF-IoT.
2016.7845400

[5] A. Auger, E. Exposito, and E. Lochin. A Generic Framework for Quality-based Autonomic
Adaptation within Sensor-based Systems. In Service-Oriented Computing – ICSOC 2016
Workshops: ASOCA, ISyCC, BSCI, and Satellite Events, pages 21–32, Banff, AB, Canada,
2017. Springer. URL https://doi.org/10.1007/978-3-319-68136-8_2

[6] A. Auger, G. Baudic, V. Ramiro, and E. Lochin. Using the HINT Network Emulator
to Develop Opportunistic Applications: Demo. In Proceedings of the Eleventh ACM
Workshop on Challenged Networks, CHANTS ’16, pages 35–36, New York City, NY, USA,
2016. ACM. URL http://doi.acm.org/10.1145/2979683.2979699

[7] G. Baudic, A. Auger, V. Ramiro, and E. Lochin. HINT: From Network Characterization to
Opportunistic Applications. In Proceedings of the Eleventh ACM Workshop on Challenged
Networks, CHANTS ’16, pages 13–18, New York City, NY, USA, 2016. ACM. URL http:
//doi.acm.org/10.1145/2979683.2979694

xiii

http://dx.doi.org/10.1049/iet-wss.2017.0008
https://doi.org/10.1109/ICIN.2017.7899407
https://doi.org/10.1109/ICIN.2017.7899407
https://doi.org/10.1109/WF-IoT.2016.7845400
https://doi.org/10.1109/WF-IoT.2016.7845400
https://doi.org/10.1007/978-3-319-68136-8_2
http://doi.acm.org/10.1145/2979683.2979699
http://doi.acm.org/10.1145/2979683.2979694
http://doi.acm.org/10.1145/2979683.2979694

This page was intentionally left blank.

Contents

Acknowledgments vi

Abstract ix

Résumé xi

List of Publications xiii

Contents xv

List of Figures xix

List of Tables xxi

List of Abbreviations xxiii

1 General Introduction 1
1.1 Introduction . 1
1.2 Context . 3
1.3 Research Problems . 4

1.3.1 Integration-related Challenges . 4
1.3.2 Quality of Observation . 6
1.3.3 System Adaptation . 7

1.4 Existing Work . 8
1.5 Thesis Positioning . 10
1.6 Scientific Contributions . 11
1.7 Dissertation Outline . 13

2 Background and State of the Art 15
2.1 Introduction . 16
2.2 Integration . 16

2.2.1 Structural Integration . 17

xv

2.2.2 Semantic Integration . 19
2.2.3 Scalable Integration . 21

2.3 Quality of Observation . 23
2.3.1 Quality Dimensions . 23
2.3.2 Metrics and Quality Attributes . 25
2.3.3 Popular Ontologies for Sensors and Observations 25
2.3.4 QoO Mechanisms and Transformations . 29

2.4 System Adaptation . 29
2.4.1 Context-Aware Systems . 29
2.4.2 Autonomic Computing . 30

2.5 Survey of Existing Work . 32
2.5.1 Methodology . 32
2.5.2 Relevant Solutions for the Considered Challenges 33
2.5.3 Discussion . 39

2.6 Summary of the Chapter . 41

3 Generic Framework for QoO-aware Adaptive Sensor Web Systems 43
3.1 Introduction . 44
3.2 Motivation and Methodology for a new Framework 45

3.2.1 Terminology Used . 45
3.2.2 Limitations of Existing Frameworks . 45
3.2.3 General Requirements . 49

3.3 QASWS Reference Model . 49
3.3.1 Functional Model . 50
3.3.2 Adaptation Model . 51
3.3.3 Domain Model . 54
3.3.4 Observation Model . 57

3.4 QASWS Reference Architecture . 63
3.4.1 Functional View . 63
3.4.2 Observation View . 64
3.4.3 Adaptation View . 67
3.4.4 Deployment View . 68

3.5 QASWS Reference Guidelines . 71
3.5.1 General Technological Choices . 71
3.5.2 Architectural Choices . 72
3.5.3 Observation Formatting and QoO Characterization 72
3.5.4 Semantics and Ontologies . 72
3.5.5 Storage and Observation Retention . 73
3.5.6 System Adaptation . 74
3.5.7 Deployment . 74
3.5.8 Performances and Evaluation . 75

3.6 QASWS Framework Evaluation . 76
3.6.1 Compliance with General Requirements 76

xvi

3.6.2 Comparison with Related Work . 79
3.6.3 Discussion . 79

3.7 Summary of the Chapter . 80

4 iQAS: an Integration Platform for Quality of Observation Assessment as a Service 81
4.1 Introduction . 82
4.2 Motivation for a New Sensor Web Proposal . 83

4.2.1 Reminder of Existing Sensor Webs . 83
4.2.2 Existing Commercial Platforms . 84
4.2.3 Existing Software Products . 84

4.3 Instantiation of our Generic Framework for QASWS 86
4.3.1 Methodology Followed . 86
4.3.2 Use Cases and Specific Requirements for iQAS 87
4.3.3 Discussion . 89

4.4 Implementation Choices for the iQAS Platform 89
4.4.1 General Approach . 89
4.4.2 Programming Language and Frameworks 90
4.4.3 Persistence and Reasoning . 92
4.4.4 Discussion . 93

4.5 Design . 94
4.5.1 iQAS Observation Model . 95
4.5.2 iQAS Processing Model . 97
4.5.3 iQAS Adaptation Model . 99
4.5.4 Discussion . 101

4.6 Implementation . 101
4.6.1 The iQAS Ecosystem . 102
4.6.2 Handling New Observation Requests . 104
4.6.3 Providing System Adaptation . 107
4.6.4 Discussion . 110

4.7 Usage and Deployment . 111
4.7.1 Configuring iQAS . 111
4.7.2 Interacting with iQAS . 111
4.7.3 QoO Pipeline Development Walk-through 114
4.7.4 Discussion on Possible iQAS Deployments 117

4.8 Summary of the Chapter . 118

5 iQAS Evaluation and Deployment Scenarios 119
5.1 Introduction . 120
5.2 Evaluation of iQAS Design . 120

5.2.1 Compliance with the QASWS Generic Framework 121
5.2.2 iQAS and the Internet of Everything . 122

5.3 Key Primary Indicators for iQAS Performance . 123
5.3.1 iQAS Overhead . 126
5.3.2 iQAS Throughput . 130

xvii

5.3.3 iQAS Response Time . 133
5.4 Use Case 1: Smart City . 134

5.4.1 Motivation . 134
5.4.2 Scenario and Experimental Results . 135
5.4.3 Discussion . 135

5.5 Use Case 2: Web of Things . 137
5.5.1 Motivation . 137
5.5.2 Scenario and Experimental Results . 137
5.5.3 Discussion . 139

5.6 Use Case 3: Post-disaster Areas . 140
5.6.1 Motivation . 140
5.6.2 Opportunistic Networking and the HINT Network Emulator 141
5.6.3 Scenario and Experimental Results . 142
5.6.4 Discussion . 143

5.7 Evaluation of iQAS Specific Requirements . 145
5.7.1 Functional Requirements . 145
5.7.2 Non-functional Requirements . 146
5.7.3 Discussion . 149

5.8 Summary of the Chapter . 150

6 Conclusions and Perspectives 151
6.1 Contributions: QoO-aware Adaptive Sensor Web Systems 152

6.1.1 Generic Framework for QASWS . 152
6.1.2 The iQAS Platform . 154
6.1.3 Prerequisites for QASWS Adoption and Use 155

6.2 Perspectives . 156
6.2.1 Improvements to the QASWS Generic Framework 156
6.2.2 Improvements to the iQAS Platform . 157
6.2.3 Transverse Paradigms of Relevance for QoO 158
6.2.4 QoO Considerations Regarding the Forthcoming IoE 161

A Appendix: OGC SWE 2.0 Specifications 163

B Appendix: Legend for the Surveyed Sensor Webs 164

C Appendix: ISO/IEC/IEEE 42010 Standard - Terms and Concepts 165

D Appendix: Observations Delivered by the iQAS Platform 166

References 169

xviii

List of Figures

1.1 Sensor Web: a middleware layer between sensor and application layers 3
1.2 Main research areas of the thesis . 12
1.3 Dissertation structure . 14

2.1 Cisco’s IoT Reference Model . 19
2.2 The DIKW ladder proposed by Sheth . 20
2.3 Structure of an Autonomic Element within the AC paradigm 31

3.1 Layer-based functional model for QASWS . 51
3.2 Common mechanisms for QASWS . 52
3.3 “Black-box” service characterization for a QoO mechanism 52
3.4 Service characterization for 6 popular QoO mechanisms 54
3.5 Domain model for QASWS . 55
3.6 Relationships between QoO mechanisms and QoO Pipelines 56
3.7 Observation granularity levels considered by QASWS 59
3.8 Observation granularity levels and quality dimensions considered by QASWS . 59
3.9 Ontologies used to model key concepts of QASWS 60
3.10 Overview of the QoOnto ontology . 62
3.11 Functional view for QASWS . 64
3.12 Observation view for QASWS . 65
3.13 Pipeline chaining and observation granularity levels within QASWS 66
3.14 Adaptation view for one observation request . 67
3.15 Deployment view for QASWS . 70

4.1 Methodology used for instantiation . 86
4.2 Actors and use cases for the iQAS platform . 87
4.3 Overview of the iQAS platform . 94
4.4 Raw Data, Information and Knowledge observations within iQAS 95
4.5 Observation pipelines and QoO Pipelines within iQAS 98
4.6 Kafka topics as intermediary buffers . 99

xix

4.7 Actor hierarchy for iQAS’ MAPE-K loop . 100
4.8 MAPE-K internal messages . 101
4.9 State diagram of an observation request within iQAS 102
4.10 Component diagram of the iQAS ecosystem . 103
4.11 Enforcement of a new observation request 1/2 . 105
4.12 Enforcement of a new observation request 2/2 . 106
4.13 Healing of an enforced observation request 1/3 108
4.14 Healing of an enforced observation request 2/3 109
4.15 Healing of an enforced observation request 3/3 110
4.16 Screenshots of iQAS web-based GUI . 113

5.1 Mapping between the QASWS Generic Framework and the iQAS platform . . . 121
5.2 iQAS positioning within the Internet of Everything 124
5.3 Experimental setup for the evaluation of iQAS overhead 126
5.4 Experimental results for iQAS overhead (initial_config) 128
5.5 Experimental results for iQAS overhead (high_throughput_config) 129
5.6 Experimental results for observation throughput 131
5.7 Experimental results for iQAS response time . 133
5.8 OBS_ACCURACY assessment for two different iQAS requests 136
5.9 OBS_RATE assessment for an OpenWeatherMap virtual sensor 139
5.10 The HINT network emulator architecture . 142
5.11 Binding the HINT network emulator with iQAS 144
5.12 OBS_FRESHNESS for observations generated by two HINT nodes 145
5.13 Impact of iQAS adaptation on observation rate for one observation request . . 148

6.1 The Sensing as a Service model . 159

xx

List of Tables

2.1 Survey of quality attributes with their commonly accepted definitions 26
2.2 Survey of popular ontologies for sensors and observations 28
2.3 Survey of 30 Sensor Web solutions designed between 2003 and 2017 38
2.4 Feature comparison for some Sensor Webs close to the QASWS approach 41

3.1 Functional requirements considered by our generic framework for QASWS . . . 47
3.2 Non-functional requirements considered by our generic framework for QASWS 48
3.3 Examples of Raw Data, Information and Knowledge observations 58
3.4 Semantic alignment considered for QASWS . 61
3.5 Example of a SLA translation at different levels of the observation view 66
3.6 Evaluation of our generic framework for QASWS (functional requirements) . . . 77
3.7 Evaluation of our generic framework for QASWS (non-functional requirements) 78

4.1 Meta-analysis of different approaches for observation processing 85
4.2 Specific requirements considered for the iQAS platform 88
4.3 Comparison of three popular message brokers . 93

5.1 Mapping between iQAS’ use cases and general requirements from the QASWS
Generic Framework . 122

5.2 Kafka configuration used by iQAS consumers/producers within pipelines . . . 125
5.3 Individual message size within Kafka for the three observation levels 125
5.4 Summary of performance degradation for iQAS delay and iQAS throughput for

each request kind according to the two Kafka configurations 132
5.5 Configuration of the HINT network emulator . 143
5.6 Configuration of the MAPE-K loop used to evaluate iQAS adaptability 146

xxi

This page was intentionally left blank.

List of Abbreviations

AC Autonomic Computing
API Application Programming Interface
DTN Delay Tolerant Network
E2E End-to-End
ETSI European Telecommunications Standards Institute
IBM International Business Machines
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
IoE Internet of Everything
ISO International Organization for Standardization
ITU International Telegraph Union
ITU-T ITU Telecommunication Standardization Sector
iQAS integration platform for QoO Assessment as a Service
JSON JavaScript Object Notation
NASA National Aeronautics and Space Administration
NIST National Institute of Standards and Technology
OGC Open Geospatial Consortium
QASWS QoO-aware Adaptive Sensor Web System(s)
QoC Quality of Context
QoE Quality of Experience
QoI Quality of Information
QoK Quality of Knowledge
QoO Quality of Observation
QoS Quality of Service
REST REpresentational State Transfer
S2aaS Sensing as a Service
SANET Sensor and Actuator NETwork
SLA Service Level Agreement
SOA Service-Oriented Architecture
SSN Semantic Sensor Network
SSW Semantic Sensor Web
SWE Sensor Web Enablement
UML Unified Modeling Language
VAC Virtual Application Consumer
VSC Virtual Sensor Container
W3C World Wide Web Consortium
XML eXtensible Markup Language

xxiii

This page was intentionally left blank.

Chapter 1
General Introduction

“The scariest moment is always just before you start.”

- Stephen King

Contents

1.1 Introduction . 1

1.2 Context . 3

1.3 Research Problems . 4

1.3.1 Integration-related Challenges . 4

1.3.2 Quality of Observation . 6

1.3.3 System Adaptation . 7

1.4 Existing Work . 8

1.5 Thesis Positioning . 10

1.6 Scientific Contributions . 11

1.7 Dissertation Outline . 13

1.1 Introduction

Sensing and measuring our environment in order to take decisions accordingly has always
been a challenging task for humans. For instance, one of the first sensors that came to market
seems to be a thermostat conceived in 1883 by Warren S. Johnson, an American college
professor. This first thermostat was originally developed to better regulate temperature within
his individual classrooms1. Since then, as subjective human beings, we have designed and
extensively used sensors to become more objective regarding phenomena or events that could
occur in our everyday lives. Overall, this ability to precisely report environmental phenomena

1Source: https://en.wikipedia.org/wiki/Warren_S._Johnson

1

https://en.wikipedia.org/wiki/Warren_S._Johnson

has provided us better knowledge and understanding of our environment. Of course, sensing
would not have been possible without the standardization of some physical units (meter,
degree Celsius, etc.) and quantities (kilo, etc.) that are still playing a major role regarding
observation report and analysis.

Sensing process has always involved observation producers and observation consumers. In
the 2000’s, first sensor middlewares were designed and deployed to retrieve observations in an
ad-hoc manner, focusing on abstracting observation collection. In that, these systems already
intended to bridge the gap between sensors and higher applications, complying with the
Sensor Web vision [8]. Later, with the growth of the Internet of Things (IoT) [9, 10], novel types
of sensors –virtual but also logical– appeared and consumer needs regarding observations
evolved as well. Traditional topic/date/location queries (what?, when?, where?) have been
replaced by more complex queries, with specific constraints that need to be handled in real-
time according to the context. More importantly, consumers often have distinct needs that
require from middlewares to adapt observation distribution in an application-specific manner.
For instance, a touristic application that helps citizens and tourists to plan their travels through
a city by taking into account the current pollution levels may be less demanding (especially
regarding the age and the correctness of the observations) than a health application intended
for use by asthmatic people.

In order to cope with these changes, the main approach has consisted in the addition
of more intelligence at the middleware level, to provide new guarantees such as Quality of
Service (QoS) or enable new capabilities such as Context and semantic annotation. This
approach, also known as the Sensor Web paradigm, has relieved end applications from imple-
menting complex logic, simplifying their development and allowing them to focus on creating
new added-value services from the received observations. However, the existing middleware
solutions fail in accommodating additional challenges posed by observation producers and
consumers within the recent IoT. Our work is oriented to address some of these challenges
and focus more specifically on integration, observation quality and system adaptation issues.

Next sections are intended:

• To introduce sensor-based systems, the Sensor Web paradigm and some radical changes
linked to the growth of the Internet of Things (IoT);

• To identify and describe the main challenges that need to be considered to design
data-centric Sensor Webs able to meet observation consumers’ needs;

• To present existing works and main approaches that have been proposed to address the
identified challenges so far;

• To introduce our two contributions and present the dissertation structure of this thesis.

2

1.2 Context

In the late 1990s, first Sensor Web systems [11] were defined and deployed by the NASA2

to perform environmental monitoring through physical sensors. These systems had the
particularity to envision cooperation among sensors to collectively fulfill sensing tasks. Later,
in 2003 and then 2011, the Open Geospatial Consortium (OGC) published a set of standards to
implement the Sensor Web vision, through the creation of the Sensor Web Enablement (SWE)
initiative. Sensor Web vision [8] refers to the use of a middleware software between sensor and
application layers, playing the role of a mediator between sensor capabilities and application
needs. Sensor Webs should also implement functions to abstract certain operations such as
sensor discovery, tasking, access, alerting and eventing (see Figure 1.1).

Sensor Web layer

Sensor layer

Application layer

discovery

tasking eventing

alerting

access

physical virtual logical

Figure 1.1 – Sensor Web: a middleware layer between sensor and application layers

The Internet of Things (IoT) [9, 10] is a recently novel paradigm which envisions pervasive
and inter-connected objects (also called Things) that can be uniquely addressed, generally
through the Internet. Kevin Ashton, an executive director of the Auto-ID Center, coined the
term “Internet of Things” itself in 1999. Recently, he said: “I could be wrong, but I’m fairly
sure the phrase “Internet of Things” started life as the title of a presentation I made at Procter &
Gamble (P&G) in 1999. Linking the new idea of RFID in P&G’s supply chain to the then-red-hot
topic of the Internet was more than just a good way to get executive attention. It summed up
an important insight that is still often misunderstood.” [12]. For more than a decade now, the
IoT paradigm has revealed itself a more global paradigm that goes way further than just RFID
tags. In several ways, the IoT has revolutionized the sensing field by introducing new types of
sensors –not only physical but also virtual ones as we will see later–, new methods to process
data as well as new added-value services and uses.

In the light of these profound changes, we have witnessed the development of countless
data-centric platforms, generally called “IoT platforms”. Compared to initial sensor middle-
wares, they embed more “intelligence” in order to relieve their consumers to perform some
tasks that could be costly in terms of time and/or resources. As a result, these IoT platforms
generally provide sophisticated data processing (such as reasoning or inference) on observa-
tions received from sensors in a consumer-specific fashion. Last but not the least, some of

2National Aeronautics and Space Administration

3

them may take advantage of the Cloud Computing paradigm [13, 14], providing more generic
and scalable service by enabling Sensing as a Service (S2aaS) [15]. In a logical manner, obser-
vation consumers have become more demanding as platforms have evolved. For instance,
continuous sensing and real-time monitoring are now two common requirements that imply
to deal with continuous observation streams [16].

More than ever, there is a need to bridge the gap between sensor capabilities and consumer
needs while reducing the complexity of end-user applications. In order to achieve this, we
believe that a middleware layer is required to handle sensors with different capabilities, cope
with observation heterogeneity, translate application needs, etc. In that, Sensor Webs have
already proven to be a good fit for ensuring this mediator role while providing extra non-
functional capabilities such as scalability or resilience for instance. However, the far-reaching
changes introduced by the IoT raise novel challenges pertaining to observation quality and
system adaptation that still need to be overcome by Sensor Webs. We detail some of these
challenges in the next section.

1.3 Research Problems

The proliferation of sensors and the need for added value services from applications with
heterogeneous needs makes the achievement of the Sensor Web vision more complex within
the IoT ecosystem. In particular, the design of data-centric platforms able to provide added-
value services from observations raises new research challenges.

1.3.1 Integration-related Challenges

In software engineering, system integration may be defined as the process to link together
different computing systems and software applications physically or functionally to act as a
coordinated whole3. Three main integration-related challenges need to be addressed when
conceiving a Sensor Web system:

Observation producers Several manufacturers have conceived numerous sensors over the
last few years. This has led to a large sensor heterogeneity that Sensor Webs are asked to
abstract. Indeed, sensors may differ by their capabilities (sensing rate, battery level, etc.),
location (e.g., mobile, static), etc. These disparate and potentially dynamic capabilities
should be taken into account by Sensor Webs in order to perform appropriate selection
when answering to a consumer query. In the meantime, due to the growth of the IoT, we
have witnessed the emergence of new sensor types. In addition to common physical
sensors, virtual and logical sensors are now special observation sources that can be
used by Sensor Webs. Virtual sensors are generally web services that can be queried
through Application Programming Interfaces (APIs). Unlike physical sensors, virtual
sensors generally do not have a physical presence. For instance, Twitter or Google
Maps can be seen as virtual sensors. Logical sensors are sensors that combine data
coming from both physical and virtual sensors to produce enriched and more valuable

3Source: http://www2.cis.gsu.edu/cis/program/syllabus/graduate/cis8020.asp

4

http://www2.cis.gsu.edu/cis/program/syllabus/graduate/cis8020.asp

observations (e.g. a web service that collects data from physical weather stations and
displays them on a map retrieved from a virtual sensor). No matter their type, sensors
may output observation streams that may require (nearly) real-time guarantees or to
preserve the observation order during processing. Generally, sensor integration is a
process that involves many steps. For instance, integrating a new sensor generally
starts at network level by implementing its communication protocol stack. Then, it
may be completed at application level by defining the meaning of the different fields
that compose an observation record for the given sensor. Sometimes, integration of
observation producers requires additional system flexibility to automatically discover (or
remove) new sensors at runtime.

Observation consumers From a Sensor Web perspective, end third-party applications are
the main observation consumers to integrate. In the same way as with sensors, hetero-
geneity is also present at application level. Depending on their design, development
and use-case domain, applications may not express the same observation needs. In
particular, as multiple observations may be emitted by sensors in response to a single
occurred phenomenon/event, consumers may want to specify additional constraints
regarding granularity and, more generally, observation quality. As a result, Sensor Webs
should provide interoperable and extensible APIs to allow consumers to express their
needs. Besides, these APIs should be generic enough to be suitable to a wide number of
consumers while allowing them to express custom observation quality constraints. Last
but not the least, there should be clear advantages for applications in retrieving observa-
tions from a Sensor Web rather than directly from sensors. In addition to the obvious
benefit of not having to cope with sensor/observation heterogeneity, applications that
use Sensor Webs may be relieved to perform some computationally-expensive tasks that
involve observation processing. For developers who conceive new applications, the use
of a Sensor Web may drastically reduces development complexity. Thus, they can focus
more on the implementation of business-specific features that their applications should
provide.

System scalability For a system, scalability can be defined as “the capability to handle a
growing amount of work, or its potential to be enlarged to accommodate that growth” [17].
Regarding Sensor Webs, the “amount of work” to do can be estimated based on the
number of observations that they should process by unit of time. Several factors may
increase this workload such as the number of connected sensors (as well as their sensing
rate), the number of distinct consumers to serve, the transformation operations to
apply on observations, etc. Gartner forecasts that 20.4 billion connected Things will
be used worldwide in 2020. This represents an increase of 142% compared to the year
2017 (8.4 billion connected Things)4. In the meantime, the latest advances in cellular
networks (with the incoming release of the fifth generation of mobile networks) may
presage a reduction of the energy cost needed for reporting sensing results, which could
lead up to an increase in the observation volume that Sensor Webs should process. In the
light of such predictions, scalability requirements will become more and more important

4Source: http://www.gartner.com/newsroom/id/3598917

5

http://www.gartner.com/newsroom/id/3598917

to allow the integration of new Things while ensuring adequate QoS for already enforced
requests.

1.3.2 Quality of Observation

As data-centric systems, Sensor Webs may deliver either observations or more enhanced
services that are based on them (e.g., real-time travel planner, public parking space finder,
smart building management, etc.) to their consumers. In return, these consumers should
expect from these middlewares to meet their needs in order to use received materials as it
is. On this point, the Quality of Service (QoS) offered by a Sensor Web may directly affect the
decisions taken by the users of a given application. More specifically, network QoS may impact
the Data Quality (DQ) received from observation producers and therefore impact Quality
of Observation (QoO) provided to final consumers [18]. Prior to contract any Service Level
Agreement (SLA), a Sensor Web should define the QoO attributes or metrics that it intends
to support. Later, this common terminology will be essential for both the expression of QoO
needs and the formalization of QoO guarantees.

Expression of QoO needs Common observation queries may be broken down following the
Triad scheme [19], by identifying the what?, when? and where? primitives. While when?
and where? relate to the spatiotemporal context of measurement, the what? primitive
generally refers to the feature of interest for the consumer that supplied the query. QoO
needs correspond to the expression of additional observation-related quality require-
ments regarding one or several of these primitives. Indeed, within modern data-centric
systems, common network QoS attributes (delay, bandwidth, jitter, etc.) have often
shown to be unsuitable for expressing the intrinsic observation characteristics that a
consumer wanted to receive. When present, QoO needs should be seen as the mini-
mum acceptable observation quality for a given consumer. For instance, an observation
consumer may be interested in only recent observations that have been sensed less
than 1 hour ago while another may be interested to receive all of these observations
as long as they are accurate. Both of these consumers have distinct QoO needs, which
can be translated into two different notion of “high-quality” observations. However,
the expression of QoO needs is conditioned by the use of a common terminology. As a
consequence, Sensor Webs should expose a set of QoO attributes to their consumers in
such a way that they will be able to better precise their QoO needs. Moreover, not all
consumers are interested in QoO and therefore QoO needs should remain an optional
part of the SLAs submitted to Sensor Webs.

QoO needs are generally expressed by observation consumers (either applications or
users) to Sensor Webs. However, there are rare cases where Sensor Webs may express
some QoO needs to their observation producers. For instance, this situation can occur
in Sensor and Actuator NETworks (SANETs) [20] where sensors can perform specific
actions on-demand or be remotely reconfigured. In this thesis, we primarily focus on
QoO needs coming from observation consumers, assuming that Sensor Webs should
adapt on the observations received from sensors.

6

Providing QoO guarantees For a Sensor Web, providing QoO guarantees is a complex pro-
cess that raises several challenges. Some of them relate to the discovery of available
mechanisms that may ensure QoO, to their characterization with regards to their impact
on the different QoO attributes or to their selection and deployment. Therefore, QoO
guarantees consist in the automatic selection and deployment of the best mechanism(s)
to meet consumer’s QoO needs. Sometimes, the required mechanisms result from the
composition of existing functionalities. As a consequence, the challenges are not only re-
lated to mechanism discovery and selection but also to their composition, initialization
and (re)configuration. For instance, composition has proven to be a challenging issue
within both Service-Oriented Architectures (SOA) [21] and Semantic Web Services [22]
research fields. Returning to Sensor Webs, mechanisms should be reusable, generic and
reconfigurable to be deployed several times and provide distinct QoO levels. Continuous
streams also raise new challenges and require implicit QoO guarantees. Such kind of
data often requires to preserve observation sequences to further enable Event Stream
Processing (ESP) [16], in order to ascertain the timeline of some occurred events for
instance. Finally, as QoO or consumer needs may evolve over time, Sensor Webs may
also envision more dynamic adaptation processes, with the use of an adaptation control
loop to keep meeting the enforced SLAs for instance.

1.3.3 System Adaptation

Like other software products, Sensor Webs are generally the outcome of a long software engi-
neering cycle. While they are often conceived to comply with specific baseline requirements
expressed at design phase, it is generally impossible for developers to envision all their future
requirements and use cases. As a result, adaptation is needed offline and even sometimes
at runtime in order to cope with new uses without requiring the development of new soft-
ware features or components. As we will see later in this thesis, adaptation feature may also
be required within Sensor Webs in order to facilitate sensor integration and provide QoO
guarantees.

Self-(re)configuration In this thesis, we envision “self-configuration” as the discovery process
and the automatic configuration of the resources that a Sensor Web can use or access.
Generally, such process is performed once at launch but it can also be triggered every
time that a watched resource (such as sensors, user-defined mechanisms, configuration,
etc.) is added, updated or removed. In the case where some new changes need to be
applied, it would be more appropriate to call this process “self-reconfiguration”. Sensor
discovery is normally offered by Sensor Web systems (see Figure 1.1). In order to retrieve
sensor capabilities, Sensor Webs should support the different protocols that sensors
use (e.g., the TEDS5 IEEE 1451 protocol [23]), enabling sensor plug-and-play feature. As
this feature cannot always be achieved, stakeholders may use ontologies to describe
sensor capabilities and abstract their heterogeneity (manufacturer, communication
protocol used, etc.).

5Transducer Electronic Data Sheet

7

QoO-based adaptation In this thesis, we refer to “QoO-based adaptation” as the ability of a
Sensor Web to dynamically adjust observation quality according to consumer needs.
In this respect, we distinguish two different reconfiguration processes that can be per-
formed to enable QoO-based adaptation. These processes are reconfiguration processes
in the sense that they necessarily require to change part of the internal behavior of a Sen-
sor Web in order to cope with consumer needs. Structural reconfiguration is performed
when creating a new “observation processing chain” with many components/mecha-
nisms chained that sequentially process observations to, in the end, tend to the QoO
level specified within the consumer’s SLA. Any modification of this observation pro-
cessing chain (mainly insertion or component removal) should also be considered as
a structural reconfiguration. Behavioral reconfiguration consists in an action (acti-
vation, deactivation, reset, value change for a given parameter, etc.) performed on a
specific component, which is often part of an already-deployed observation chain. While
behavioral reconfiguration is generally far less costly than structural reconfiguration,
it nevertheless requires modular and (re)configurable components to be performed.
Either way, QoO-based adaptation requires the knowledge of some domain-specific
experts (e.g., meteorologists) who should formalize this knowledge in a comprehen-
sible manner so that a Sensor Web can correctly select, chain, configure and deploy
the different components to form observation chains. Depending on implementations,
QoO-based adaptation can be supervised or realized autonomously without any human
intervention.

1.4 Existing Work

Published in 2011, the OGC SWE 2.0 [8] is the most recent set of specifications for Sensor Webs.
It is composed of several standards that relate to both encodings and Web Services. Despite of
the lack of quality attributes’ definition, the OGC has acknowledged the challenges of Data
Quality (DQ), provenance and uncertainty assessment, mentioning that “knowledge about the
quality, provenance and uncertainty of sensor outputs is essential for making the right decisions
based upon observations” [8]. Yet, in the same paper, the OGC has also pointed out that there
is no unique way to incorporate quality attributes to observations and that such information
is generally missing.

Overall, few software prototypes have concretely implemented the OGC SWE standards.
Among them, we can cite SWAP [24] or FAPFEA [25]. However, even if these solutions do com-
ply with OGC SWE, they mainly focus on Web Services management and deployment, without
mentioning QoO. From our knowledge, we can explain this trend by the fact that, despite
available implementations provided by the 52°North Sensor Web Community6, OGC SWE
standards are quite complex to deploy, configure and use. In the meantime, with the growth
of the IoT [10], we have witnessed the development of more and more IoT platforms that,
pursuing the Sensor Web vision, also aim to bridge the gap between sensors and applications.
Compared to first sensor middlewares, IoT platforms can be view as a new generation of

6http://52north.org/communities/sensorweb

8

http://52north.org/communities/sensorweb

Sensor Webs that deal with new kinds of sensors (e.g., virtual) and embed more “intelligence”.
Given this logic, these new generation of Sensor Webs may exempt applications to assess QoO
or perform computation intensive tasks on observations, allowing them to focus on their own
business logic.

Since the emergence of the IoT, many integration platforms [26, 27, 28] have been devel-
oped to cope with sensor heterogeneity. Most of these platforms [24, 29] generally use the
Adapter design pattern [30] to integrate new sensors. However, this approach may also hide
certain sensor capabilities. To cope with that issue, it has become a common approach to
integrate sensors with the help of adapters while describing their capabilities using ontologies.
This trend has led to the development of numerous Semantic Sensor Webs (SSW) [31, 32]
where the W3C7 Semantic Sensor Network (SSN) ontology [33] has established itself as the
reference standard. Thus, SSW provide sensor plug-and-play feature, which may be used to
address self-(re)configuration issues from the “System Adaptation” research challenge. Finally,
few Sensor Webs mention the heterogeneity of needs at application level, which may lead to
similar requests with specific QoO needs submitted by observation consumers.

Regarding QoO, some standards have been published to unify the definition and the
meaning of quality attributes. ISO 8000 [34] is a global standard for Data Quality defined by
the International Organization for Standardization (ISO). However, it is not suitable for Sensor
Webs as it assumes that data is always business-related. Common Data Model Encoding is
the OGC standard for observation encodings in SWE 2.0 [35]. It mentions the possibility to
annotate a measurement value with “any scalar data component, in the form of another scalar
or range value” [35]. However, this standard does not explain which quality attributes should
be used nor how to compute them. Lastly, the ISO 19157 standard [36] aims to define attributes
and procedures for geographic information quality. Even if the use of this standard could be
somehow suitable for some Sensor Webs, it is extremely rare in practice that a solution uses
both OGC SWE and ISO standards. Besides, the fact that some ISO standards are not freely
available restricts their adoption. As a result, many Sensor Web solutions [37] generally define
their own quality attributes before delegating QoO management to applications.

Finally, adaptation within Sensor Webs has mainly been achieved using Context-aware
computing [38]. Context-aware systems can be defined as systems that adapt themselves
based on sensed, retrieved or analyzed Context. While several definitions of Context have
been proposed over time, most of them are too general or vague. For instance, Dey has defined
Context as “any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves” [39]. Furthermore, as Context is a
critical resource needed by many Sensor Webs to better understand received observations,
it has to be of “good quality”. For that reason, numerous works [40, 41] have introduced and
considered Quality of Context (QoC), which can be seen as another term for QoO applied
to Context data. Chapter 2 gives more details on the differences between QoO, Context and
QoC. The Autonomic Computing (AC) paradigm [42] is one of the preferred approaches to
implement Context-aware systems. This paradigm relies on the definition of one or several
adaptation control loop(s) that intend to achieve specific business goals based on Context

7World Wide Web Consortium

9

observations. Within autonomic systems, adaptation is often achieved using the MAPE-K
loop pattern (for Monitoring, Analysis, Plan and Execution according to a Knowledge base).
Up to now, the AC paradigm has been mainly applied to the conception of smart databases
and smart servers [43], for QoS management within Enterprise Service Bus (ESB) [44], for
self-management and scalability within Machine-to-Machine (M2M) environments [45], or
recently for cognitive reasoning within Healthcare [46].

While the sensor research domain has a bright future, we also notice that most of current
middlewares and IoT platforms do not completely comply with the Sensor Web philoso-
phy (see Section Survey of Existing Work in Chapter 2). In particular, there is an insufficient
focus on 1) the integration of emerging kinds of sensors such as virtual ones, 2) the expres-
sion of consumer-specific QoO needs in an interoperable way as well as the deployment of
mechanisms to meet them, and 3) resource-based and QoO-based adaptation to cope with
Context changeability. To address this deficiency, this thesis envisions QoO-aware Adaptive
Sensor Web Systems (abbreviated QASWS in the following) as Sensor Web solutions that aim
at addressing simultaneously these three specific research challenges (integration, QoO and
system adaptation), contributing to bridge the gap between observation producers (either
physical, virtual or logical sensors) and observation consumers (applications or users).

1.5 Thesis Positioning

In this section, given previous research challenges and existing works, we precise the position-
ing of our approach.

For Integration-related challenges: we build on the Sensor Web vision by considering
a middleware layer between sensor and application layers. This middleware aims to act as
a mediator between sensor capabilities and application needs, relieving end applications
from implementing costly transformation functions such as semantic/Context annotation and
observation processing. With extensibility requirements in mind, we take into consideration
different kinds of sensors (physical, virtual and logical) which are now common observation
sources within the IoT. As observations are the most important resource to Sensor Webs, we
also consider different kinds of observations (namely Raw Data, Information and Knowledge)
that could be of interest for final consumers (applications and users). These distinctions
have been made in order to mirror current sensor, data and application heterogeneity. Be-
sides, in order to move towards Sensor Webs that focus on observations and their quality,
we reuse the “streaming platform” approach8, which can be considered as a way to conceive
data-centric service-oriented architectures. To address scalability challenges, we envision
component-based architectures that allow reusability, modularity and further elastic Cloud-
based deployments. Finally, as many streams require to preserve observation order, we also
use “shock absorbing” technologies in order to mitigate the effects of sequential pipeline
processing. Shock absorbing technologies are compliant with the Reactive Stream initiative9

8See https://www.confluent.io/blog/stream-data-platform-1
9See http://www.reactive-streams.org

10

https://www.confluent.io/blog/stream-data-platform-1
http://www.reactive-streams.org

and address the issue of fast observation producers - slow consumers, where producers could
overwhelm the consumers.

For QoO needs and QoO guarantees: we propose to express and assess QoO thanks to
the definition of QoO attributes. In order to have meaningful and interoperable attributes,
we take advantage of web semantic technologies to define them. In that end, we develop a
custom ontology that reuses the existing proposals, following the Linked Data best practices.
In particular, our ontology imports parts of the W3C SSN ontology, which is known to be a
popular standard for sensor-based systems. Please note that this ontology also plays a key
role for the two other research challenges as well (integration and adaptation). Regarding
QoO guarantees, we rely on the powerful but simple abstraction of pipeline programming
that consists in sequentially chaining transformation functions (or mechanisms) in order to
abstract the whole chain as a black box with known ports (input(s) and output(s)). Since we
semantically described them, these QoO Pipelines may be retrieved, selected and deployed to
enhance and adjust QoO level when applicable. Moreover, this abstraction enables modularity,
reusability and potential composition. Finally, as we believe in collaborative platforms, we
envision Sensor Webs as solutions where domain-specific experts could share their knowledge
and define their own QoO pipelines.

For System Adaptation: we envision adaptive Sensor Webs that enable both resource-
based and QoO-based adaptation. For resource-based adaptation, we mainly implement
sensor and QoO Pipeline discovery (at launch or runtime). Regarding QoO-based adapta-
tion, we rely on the Autonomic Computing paradigm, fitting in with the IBM10 vision about
autonomous systems. Concretely, this translates into the implementation of one or sev-
eral adaptation control loops. Within such loops, symptoms may trigger into Requests for
Change (RFCs) that eventually may lead to perform appropriate corrective actions. Finally,
we consider feedback from adaptation loops as valuable knowledge to be shared with Sensor
Webs’ users and provide real-time QoO visualization according to several granularity levels to
them.

In the next section, we provide an overview of our contributions that aim to pave the way
towards QoO-aware and more adaptive Sensor Web systems.

1.6 Scientific Contributions

The three research challenges addressed in this thesis pertain to distinct research fields. As
a consequence, this thesis can be seen as a multidisciplinary thesis that aims to reconcile
Software Engineering (Integration-related challenges), Data Quality Management (QoO) and
Context-awareness (System Adaptation) together (see Figure 1.2).

Our first scientific contribution is a Generic Framework for QoO-aware Adaptive Sensor
Web Systems (QASWS). This framework is mainly intended to be used by researchers and
developers when conceiving a new QASWS or when studying an existing Sensor Web solution.
It provides several concepts and resources to address the identified research challenges. From
an integration perspective, the framework envisions heterogeneity at sensor, application and

10International Business Machines

11

Data Quality
Management

Software
Engineering

Context-
awareness

QASWS

Figure 1.2 – The three main research areas of this thesis. “QASWS”: QoO-aware Adaptive
Sensor Web Systems.

observation levels. Regarding QoO, the framework defines several core abstractions that fall
within the pipeline-programming paradigm. Furthermore, in order to enable QoO assessment
and further QoO guarantees, we use semantics to propose a lightweight QoOnto ontology
based on the SSN standard developed by the W3C. Finally, regarding autonomic adaptation,
the framework defines the role of the different components of the MAPE-K loop, as well as
the different steps from the detection of a symptom until the deployment of a remedy to
satisfy quality requirements. As much as possible, we describe the different elements of this
framework in a platform-independent manner using well-known modeling languages such
as Unified Modeling Language (UML) to provide reusable and customizable resources. The
three cornerstones of our framework are: 1) a reference model that present the key concepts
employed; 2) a reference architecture introduced with several architecture views; and 3) a
set of reference guidelines that may facilitate the derivation of concrete implementations for
QASWS.

Our second scientific contribution is a concrete instantiation of our generic framework
in order to conceive a QoO-aware adaptive Sensor Web solution. As a result, we propose
an integration platform for QoO Assessment as a Service (iQAS). The development of this
custom prototype has been motivated by a thorough survey of existing Sensor Webs from
a QoO perspective. This survey identified many gaps that have driven the design and the
development of iQAS. As part of a bigger ecosystem, iQAS relies on a domain-specific instanti-
ation of the QoOnto ontology as well as additional tools that have been used to emulate both
observation producers and consumers. iQAS evaluation has been first performed regarding
the three research challenges (integration, QoO, adaptation). Then, we envisioned three de-
ployment scenarios (Smart Cities, Web of Things and post-disaster areas) where QoO could
be a challenging issue to address. Overall, the different evaluations have shown that future

12

Sensor Webs should be QoO-aware and adaptive. As we foresee that QoO will become more
and more important within numerous sensor-based systems, we believe that iQAS can play an
educational objective, raising awareness about the importance to consider, assess and adapt
QoO. Furthermore, as a collaborative platform, iQAS puts back humans and domain-specific
experts in the loop, which translates into more accurate adaptation decisions.

1.7 Dissertation Outline

As shown in Figure 1.3, the rest of this manuscript is organized as follow:

Chapter 2. Background and State of the Art
This chapter provides the required background to fully understand the different contribu-

tions of this thesis. First, it introduces existing works that have been proposed to cope with
the three identified research challenges, namely integration, QoO and system adaptation. In
particular, this chapter provides two comparative surveys of quality attributes and ontologies
for sensors and observations. Then, it reviews 30 Sensor Web solutions developed between
2003 and 2017 from a QoO perspective. This extended survey allows us to identify some
limitations in current approaches and lays the foundation for the need of a custom QoO-aware
adaptive Sensor Web solution.

Chapter 3. Generic Framework for QoO-aware Adaptive Sensor Web Systems
Based on the different lessons learned from the existing works, this chapter envisions

the development of QoO-aware Adaptive Sensor Web Systems (QASWS) to cope with the
three research challenges identified in the context of this thesis (integration, QoO, system
adaptation). In that way, it proposes three different but complementary resources (models,
architecture views and reference guidelines) that, all together, form our Generic Framework.
This framework aims to foster the development of new QASWS, achieving the initial Sensor
Web vision for more complex environments and deployment scenarios such as those that can
be found within the IoT. All introduced resources are presented in a platform-independent
manner, in order to maximize their reusability and customization. Finally, this chapters evalu-
ates the general framework based on its initial requirements before positioning it regarding
the state of the art.

Chapter 4. iQAS: an Integration Platform for Quality of Observation Assessment as a
Service

This chapter instantiates the QASWS Generic Framework previously presented and intro-
duces an integration Platform for Quality of Observation Assessment as a Service (iQAS). In a
complementary way of our framework, iQAS gives us the opportunity to present and justify
some architectural and technological choices that need to be made during the development of
a QASWS. Thus, this chapter describes the different phases of the iQAS development (namely
design, implementation, deployment and usage) while illustrating some of the key concepts
and abstract processes of the generic framework. In particular, it shows how certain software,
good practices or design patterns can be concretely combined to implement the QASWS
vision.

13

Chapter 5. iQAS Evaluation and Deployment Scenarios
This chapter is dedicated to the evaluation of iQAS. First, the platform is extensively

evaluated with respect to the initial research challenges. Then, this chapter envisions three
deployment scenarios where QoO assessment as a service can be a must-have feature to
provide a better overall service to consumers. Whether for Smart Cities, Web of Things or
post-disaster areas where observations should be collected in a peer-to-peer decentralized
fashion, this chapter highlights some benefits of using QoO-aware and adaptive Sensor Web
systems such as the iQAS platform. For each scenario, this chapter provides extended analysis
and discussion.

Chapter 6. Conclusions and Perspectives
This last chapter concludes the work achieved during this thesis, summarizing the main

challenges, contributions and results. It describes possible enhancements for the proposed
work and gives some perspectives.

Chapter 1: General Introduction & Chapter 2: Background and State of the Art

Chapter 6: Conclusions and Perspectives

Chapter 3: Generic Framework for QoO-aware Adaptive Sensor Web Systems
(QASWS)

Chapter 4: integration platform for
QoO Assessment as a Service (iQAS)

Chapter 5: iQAS Evaluation and
Deployment Scenarios

System
Adaptation

Quality of
Observation (QoO) Integration

Software
Engineering

Context-
awareness

Data Quality
Management

Figure 1.3 – Dissertation structure

14

Chapter 2
Background and State of the Art

“You can have data without information, but you cannot have information without data.”

- Daniel Keys Moran

Contents

2.1 Introduction . 16

2.2 Integration . 16

2.2.1 Structural Integration . 17

2.2.2 Semantic Integration . 19

2.2.3 Scalable Integration . 21

2.3 Quality of Observation . 23

2.3.1 Quality Dimensions . 23

2.3.2 Metrics and Quality Attributes . 25

2.3.3 Popular Ontologies for Sensors and Observations 25

2.3.4 QoO Mechanisms and Transformations 29

2.4 System Adaptation . 29

2.4.1 Context-Aware Systems . 29

2.4.2 Autonomic Computing . 30

2.5 Survey of Existing Work . 32

2.5.1 Methodology . 32

2.5.2 Relevant Solutions for the Considered Challenges 33

2.5.3 Discussion . 39

2.6 Summary of the Chapter . 41

15

2.1 Introduction

Sensing is a research field in constant evolution. This can be explained in part by the fact that
sensor-based systems are widely used within numerous application domains (Smart Cities,
Healthcare, Public transportation, etc.), which has multiplied research efforts around common
challenges and issues to overcome. In this thesis, instead of considering a single application
domain, we rather focus on bridging the gap between sensors and applications, by dynamically
adjusting the QoO level in an application-specific manner given sensor capabilities (i.e.,
envisioning the Sensor Web vision from a data perspective). This feature, which can be
applied to multiple application domains, has been put aside for too long by too many sensor
middlewares or IoT platforms. In the previous chapter, we have motivated the fact that the
Sensor Web vision could be achieved with QoO-aware and adaptive middleware software.
This chapter aims at presenting the required background and main approaches regarding the
development of such mediator systems.

To tackle the challenges previously mentioned in Chapter 1, several approaches have been
proposed in the literature. From the integration perspective, architecture frameworks and
ontologies have been proposed to cope with sensor and application heterogeneity. When
integrating so many and heterogeneous entities, the use of certain software and technologies
is often required to ensure better scalability. From the QoO perspective, different quality
dimensions with popular attributes have been used to characterize observation quality. As
semantics can provide an interoperable manner to define and align quality attributes, we
also provide a survey of some popular ontologies for sensors and observations from a QoO
viewpoint. Common QoO mechanisms to adjust QoO guarantees are then introduced. From a
system adaptation perspective, several concepts and solutions from Context-aware systems
and the Autonomic Computing paradigm are described.

Finally, based on these fundamental concepts, this chapter provides an extended review of
30 existing Sensor Web solutions that have been developed between 2003 and 2017. For each
solution, we provide a thorough analysis from a QoO perspective, in order to identify the main
gaps to be filled, with respect to the three research challenges. Then, these lacks will serve as
foundations to motivate, describe and position our contributions.

2.2 Integration

As previously stated, integration may be performed at several levels for Sensor Webs. So far,
three main approaches, have been used (sometimes simultaneously) to facilitate the integra-
tion between observation producers, observation consumers and Sensor Webs within the IoT
ecosystem. The first approach has consisted in using some standards and architecture frame-
works (denoted as “structural integration” in the following). The second approach has used
taxonomies and semantics in order to produce more interoperable observations (semantic
integration). Finally, the third approach relates to scalability and has consisted in using certain
technologies to accommodate a great number of sensors, observations and applications to be
interconnected at the same time (scalable integration).

16

2.2.1 Structural Integration

OGC SWE specifications Up to now, OGC SWE is the main standardization effort regarding
Sensor Webs that has been adopted in both academic and commercial prototypes. OGC SWE
specifications aim at helping researchers, scientists and industrials to design and build infras-
tructures that provide real-time access to sensor data in a standardized way. The first specifica-
tion (SWE 1.0) was released in 2007. Since then, standards have been updated and a new gener-
ation of SWE specifications (SWE 2.0) is available online1 since 2011. OGC SWE 2.0 [8] contains
several standards (see Appendix A) that address encoding and Web Service specifications. It is
worth pointing that the 52°North Sensor Web Community2 provides implementations for the
different standards and, therefore, can serve as a basis for the design of a new standardized
Sensor Web solution. Nevertheless, few software prototypes have concretely implemented the
whole suite of OGC SWE standards so far. Among them, we can cite SWAP [24] or FAPFEA [25].
From our experience, we can explain this trend by the fact that OGC SWE standards are quite
complex to deploy, configure and use.

Evolution of Sensor Web terminology Originally, first OGC SWE specifications targeted
Sensor Webs that performed environmental monitoring and retrieved observations from
physical sensors only. However, in part due to the growth of the IoT, the term “Sensor Web”
has been subject to many definition proposals over time. In order to show this evolution, we
chose to introduce three different definitions published in 1999, 2011 and 2016:

Definition 1 (NASA - 1999) Sensor Webs are “developmental collections of sensor pods
that could be scattered over land or water areas or other regions of interest to gather
data on spatial and temporal patterns of relatively slowly changing physical, chemi-
cal, or biological phenomena in those regions” [11].

Definition 2 (Open Geospatial Consortium, Sensor Web Enablement - 2011) Sensor Web
is defined as “an infrastructure which enables an interoperable usage of sensor re-
sources by enabling their discovery, access, tasking, as well as eventing and alerting
within the Sensor Web in a standardized way. Thus, the Sensor Web is to sensor re-
sources what the WWW is to general information sources - an infrastructure allowing
users to easily share their sensor resources in a well-defined way” [8].

Definition 3 (Guest Editors for a Sensor Web journal - 2016) Sensor Web can be defined
as the paradigm that enables the integration of sensors/sensor networks and Web-
based platforms [47].

From these definitions, it can be noted that the initial Sensor Web vision is still applicable
today. For greater clarity, in this thesis, we build on previous definitions in order to give an
updated definition for Sensor Webs, more compliant with the IoT paradigm:

1http://www.opengeospatial.org/ogc/markets-technologies/swe
2http://52north.org/communities/sensorweb

17

http://www.opengeospatial.org/ogc/markets-technologies/swe
http://52north.org/communities/sensorweb

Considered definition for “Sensor Web” in this thesis

A Sensor Web may be any Web-based system that bridges the gap between any type of
sensors (physical, virtual or logical) and higher-level applications.

We deliberately chose to formulate a quite generic definition in order to reflect the fact that the
commonly called “sensor middlewares” and “IoT platforms” may also implement the Sensor
Web paradigm. In the following, we interchangeably use the terms “Sensor Web” and “Sensor
Web system”. We also use the plural “Sensor Webs” to refer to multiple Sensor Web systems.

Other Architecture Frameworks and Reference Models As defined by the ISO, architecture
frameworks are a set of “conventions, principles and practices for the description of architectures
established within a specific domain of application and/or community of stakeholders” [48].
Architecture frameworks are of importance regarding integration since they may help re-
searchers to visualize the positioning of a Sensor Web within its future ecosystem, as well as its
features, exchanges and dependencies. Thereafter, this may enable researchers to define a
new architecture for a Sensor Web solution while complying with a high-level vision. Apart
from OGC SWE specifications, all architecture frameworks or reference models that have been
proposed focus on the IoT. Below, we present some of them that can be considered as the most
brought to completion:

• The ITU3 Telecommunication Standardization Sector (ITU-T) has proposed an “IoT
reference model” in Y.2060 [49] and Y.2068 [50] recommendations. This model envisions
4 layers (Device, Network, Service support & Application Support, Application) with
two vertical cross-layers that span over the entire stack (Management and Security
capabilities).

• The European Telecommunications Standards Institute (ETSI) have proposed many
Machine-to-Machine (M2M) standards available online [51]. However, as most of these
standards do not consider Human Users, they are difficult to apply to a Sensor Web
context.

• The former European FP7 project IoT-Architecture (IoT-A) has delivered an “Architec-
tural Reference Model” (ARM) for the IoT, published in [52]. Authors first propose
several models (Domain, Information, Functional, Communication), which are then
used as baselines to define several views (Functional, Information, Deployment & Op-
eration). All together, these views form the ARM. Authors then use Model-Driven En-
gineering (MDE) [53] to present reference manuals with guidelines in order to create
concrete architectures.

• The Institute of Electrical and Electronics Engineers (IEEE) has formed the P2413 Work-
ing Group4 in order to deliver a “Standard for an Architectural Framework for the IoT”.

3International Telegraph Union, see http://www.itu.int
4http://grouper.ieee.org/groups/2413

18

http://www.itu.int
http://grouper.ieee.org/groups/2413

• Finally, Cisco company has also proposed a 7-level functional reference model for
the IoT (see Figure 2.1). Described in more detail in [54], this reference model has
drawn levels with respect to entities, processes, data and people. Please note that these
four elements are characteristics of the Cisco’s initiative to promote the Internet of
Everything (IoE) [55]. Built upon the IoT, the IoE paradigm has been coined by Cisco
as “the networked connection of people, process, data, and things” in an official report
dated 2013 [55]. Broadly speaking, the IoE is intended to go beyond technological
considerations of the IoT. While the IoT has mainly considered the deployment and
the interconnection of smarter communication-capable Things so far, the IoE should
encompass deep societal impacts, risks and economic benefits of a more interconnected
world.

Figure 2.1 – Cisco’s IoT Reference Model (Source: [54]).

2.2.2 Semantic Integration

Ontologies In computer science, an ontology is a structured taxonomy of concepts, relation-
ships and properties for a particular domain of discourse. Ontology-based modeling aims at
organizing and limiting the complexity of knowledge management. Ontologies foster the reuse
of existing ontologies and concepts (with import and alignment), enabling the definition of
meaningful and interoperable machine-understandable concepts. Besides, ontologies enable
to perform query inference and high-level reasoning. They have been extensively investigated
and successively used to enable the Semantic Web [56] and Linked Data [57] paradigms for
instance.

19

Observation granularity levels Sensor Web systems provide on-demand observations to
final consumers [58]. Due to our accepted definition for Sensor Webs, an observation may
either be the representation of an observed phenomenon (the temperature of a place, a person
that enters a room, etc.) or an event (availability of a new software update for instance).
However, a same observation may be reported in different ways, including more or less details
about the unit of the measure, sensor type, location, etc. In order to estimate the level of
complexity required by consumers (applications and users) to process and “understand” these
observations, taxonomies have been proposed to distinguish several observation granularity
levels. In this thesis, we acknowledge and reuse the “DIKW ladder” proposed by Sheth in [59],
which considers Data, Information, Knowledge and Wisdom (see Figure 2.2). Raw Data refers
to the unprocessed observations directly coming from sensors. On top of it, Information
is generally achieved by annotated contextual information (e.g., spatiotemporal context,
provenance, etc.) to Raw Data. Then, Knowledge corresponds to the semantic-based modeling
of Information (or Raw Data in some cases). Finally, on top of these observation levels, one
can found the Wisdom level that corresponds to the analysis and processing of the received
Knowledge, essential for any decision-making process. Please note that similar approaches
are also mentioned in other surveys such as in [60] where the National Institute of Standards
and Technology (NIST) describes three “perception levels” for sensors (raw data, primitive
and object).

Widomd

Knowledge

Information

Raw Data

Wisdom

Context
annotation

Semantic
annotation

Analysis
and processing

Figure 2.2 – The Data, Information, Knowledge, Wisdom (DIKW) ladder proposed by Sheth (Fig-
ure adapted from [59])

Semantic Sensor Webs Semantic Sensor Web [31] is a category of Sensor Web systems that
use ontologies to model sensor observations and/or to describe the capabilities of their
sensors. By applying ontologies on their observations, Semantic Sensor Webs can model
domain-specific knowledge and thus deal with machine-understandable observations. Con-
sequently, several domain-specific ontologies have been defined to model sensor-related
thematic fields (e.g., weather or oceanography for instance). Since Semantic Sensor Webs con-
sider sensors as abstract observation providers, it enhances their reusability and global Sensor

20

Web interoperability. It should be noted that OGC SWE standards define conceptual models
rather than ontologies. However, these models can easily be used as ground concepts to
develop ontologies. Some individual research efforts [61, 62] have demonstrated the feasibility
to design a Semantic Sensor Web with Semantic Sensor Observation Service (SemSOS). Finally,
several works have shown that sensor addition and removal (also called sensor plug-and-play)
were easier within such Sensor Webs [63].

The W3C SSN standard Semantic Sensor Webs have stimulated the proposal of many on-
tologies, creating a need for standardization. Between 2009 and 2011, the Semantic Sensor
Network Incubator Group5 of the W3C initiated a standardization process. They reviewed
17 sensors and observations ontologies [64], making a distinction between ontologies whose
aim is to model domain-specific knowledge (denoted as observation-centric) and others that
describe sensor capabilities (denoted as sensor-centric). After having identified the most
relevant concepts, this group developed the Semantic Sensor Network (SSN) ontology [33].
First releases of the SSN ontology were not completely aligned with the concepts defined by
OGC SWE 2.0. For instance, within first SSN releases, an Observation recorded a Situation that
might contain several ObservationValues while SWE O&M standards interpreted an Obser-
vation as the event itself. As a result, the vast majority of the ontologies that import old SSN
releases are not fully aligned with OGC SWE concepts. More recently, the W3C has announced
the development of a new SSN ontology version6 in partnership with the OGC. This new
release will allow a better alignment with OGC SWE core concepts (especially regarding the
Observation concept) and will support a wider range of applications and modern IoT-related
use cases.

2.2.3 Scalable Integration

Recommended Technologies and Software Compared to first data-centric systems that
relied on traditional databases, new Sensor Webs should deal with unbounded observation
streams. Despite the fact data streams have been extensively studied in the literature, the
implementation of Sensor Webs capable of correctly handling unbounded observation streams
is still a challenging issue. Late 2013, this statement has motivated the creation of the Reactive
Streams Initiative7. The main goal of this ongoing initiative is to provide a standard for
“asynchronous stream processing with non-blocking back pressure”. Within this project, several
working groups have been formed. They address various aspects from runtime environments
to network protocols. According to this initiative, Reactive Streams have to be responsive,
resilient, elastic and message-driven. The interested reader can read the Reactive Manifesto8

that describes these main requirements. As for developers, this initiative has already produced
Java and JavaScript APIs that may be reused to develop new software components.

Message brokers are another common software used to build scalable Sensor Web systems.
Compliant with the Reactive Streams Initiative, most of them implement the Publish-Subscribe

5http://www.w3.org/2005/Incubator/ssn
6http://w3c.github.io/sdw/ssn
7http://www.reactive-streams.org
8http://www.reactivemanifesto.org

21

http://www.w3.org/2005/Incubator/ssn
http://w3c.github.io/sdw/ssn
http://www.reactive-streams.org
http://www.reactivemanifesto.org

pattern [65]. A message broker allows developers to define several message queues (or topics)
that can serve as many intermediate buffers between key components of a Sensor Web. Since
most of message brokers are distributed, they offer a reliable, high-throughput and low-latency
observation distribution. With a message broker, sensors can asynchronously publish their
observations without waiting for a consumer. When an observation consumer is interested by
a given topic, it subscribes to it and start listening synchronously to messages directly from
the message broker.

Choosing the right “shock absorbing” technologies and software is generally sufficient
to handle a small number of observation streams and build a first local prototype. However,
when a Sensor Web has to integrate a large number of observation producers or consumers, it
may become unable to process and deliver observations to its consumers according to the
contracted SLAs. In this case, other deployments should be considered.

Cloud-based Deployments Cloud Computing [14] has promoted the Everything as a Ser-
vice (XaaS) model [66]. Within Smart Cities, we have recently witnessed the birth of Sensing as
a Service (S2aaS) model [15, 67]. This model consists in taking advantage of certain features of
Cloud-based platforms (pay as you go, scalability, elasticity, multi-tenancy, SLAs, etc.) while
considering distinct entities and stakeholders that maintain, manage and take advantage of
sensors. More generally, Cloud Computing is one of the most preferred way to ensure scalabil-
ity and/or elasticity within Sensor Web systems at deployment phase. To reconcile integration
and scalability, they may be configured to automatically provide horizontal scalability (by
deploying additional virtual instances) or vertical scalability (by increasing the allocated re-
sources per virtual instance). Sensor Webs may also provide elasticity, which is an evolution of
the scalability feature: while scalability denotes the capacity of a system to grow in order to
accommodate a more important amount of work, elasticity refers to the ability for a scalable
system to also release unused resources when the workload decreases. It should be noted that,
according to the NIST, rapid elasticity is one of the essential characteristics that Cloud-based
platforms should provide, alongside with on-demand self-service and resource pooling [13].
Over last two decades, several commercial [68, 69] and non-commercial [37, 70] sensor-based
platforms have opted for Cloud-based deployments. Finally, it is worth mentioning that, even
if Cloud technologies can guarantee resources scalability, an adequate design still needs to
be followed in order to allow further distribution. Consequently, for a given solution, scal-
ability gains will primarily depend on technological and architecture choices. For instance,
microservice-based architectures are generally a good fit to design scalable evolutive systems
since their different software components can be then split into different VMs, across different
hosts or even different containers.

22

2.3 Quality of Observation

Too many systems and applications have blind trust in the observations that they receive
from third-party sources. However, observation quality may be affected by many processes or
entities, from their production by sensors to their distribution to final consumers. To prevent
low-quality observations to be distributed to its consumers, a Sensor Web should allow them
to express their QoO needs in order to provide adequate guarantees, when possible. The
underlying assumption is that both parties should have a common “language” to characterize
and assess QoO. In the following, we present different approaches that have been investigated
to express QoO needs and provide QoO guarantees.

2.3.1 Quality Dimensions

Quality of Service (QoS) ITU-T has published several recommendations that deal with QoS.
In [71], QoS is defined as a set of characteristics and specializations. A QoS characteristic can
be seen as a quality dimension that represents “some aspect [. . .] of a system, service or resource
that can be identified and quantified” [72]. These generic characteristics (such as lifetime)
can then be derived into specializations (“remaining lifetime” or “freshness” for instance) for
more appropriate use. Although the definition of QoS encompasses the quality of information,
it is not the case in practice. Indeed, the term “Quality of Service” generally refers to packet
transportation from source(s) to destination(s) through the network. Therefore, the set of QoS
metrics is often restricted to bandwidth, delay, jitter and loss probability, only referring to
network QoS.

Data Quality (DQ) Data Quality was first investigated from information systems [73] and
customer satisfaction [74] perspectives. In this thesis, we consider DQ as the distance be-
tween the reported value (i.e., the observation) and the real event (i.e., the physical-occurred
phenomenon). DQ is mainly impacted by the sensor device quality (intrinsic quality) and
performance of the underlying collection network (especially packet losses and end-to-end
delay). Please note that DQ assessment can be quite challenging to perform on observations
produced by virtual sensors.

Context and Quality of Context (QoC) The Context notion has been first popularized by
pervasive and ubiquitous systems [75, 76, 77, 78]. These systems often make use of Context
information in order to dynamically adapt their behavior and present relevant services to
the user. In 2001, Dey defined Context as “any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and applications
themselves” [39]. Today, this Context definition seems to make consensus, allowing many
systems to be qualified as “Context-aware” [38]. For instance, Hoodline9 is a Context-aware
mobile application that uses Uber data to optimize user experience. As a result, Context
attributes are frequently taken for quality attributes while Context-aware systems are another

9https://hoodline.com

23

https://hoodline.com

term for QoO-aware systems. However, several surveys [40] have shown that Context could
be considered as an observation part with an associated quality known as “Quality of Con-
text” (QoC). In line with these works, we argue that Context attributes are different from quality
attributes: while Context refers to additional information that can be retrieved or added to an
observation (about a sensor, time & space, observation, application, etc.), quality attributes
aims at reflecting the intrinsic value of an observation, which also includes its Context. As a
consequence, a poor-quality Context may negatively impacts QoO but a good QoC does not
provide any guarantees regarding final QoO. In this thesis, we mainly acknowledge Context as
an useful material to enrich observations (Context annotation), allowing the transformation
of Raw Data into Information for instance.

Quality of Information (QoI) In [79], Bisdikian et al. define QoI as “the collective effect of
information characteristics (or attributes) that determine the degree by which the information
is (or perceived to be) fit-to-use for a purpose”. As a consequence, the definition of QoI attributes
is quite generic. Some examples of QoI attributes are latency, reputation and provenance. The
implementation of these QoI attributes (i.e., the way that applications compute them) should
be really concrete and should not vary over time nor from one application to another. On the
contrary, QoI assessment should be performed by each application regarding its present needs
and the current application Context. QoI notion is quite close from the original definition
of the QoS, allowing applications to assess more accurately how fit-for-use Information for
them is. Since some QoI attributes (such as latency and timeliness) may be impacted by
underlying-network performances, QoI and network QoS are two closely linked notions.
This should not represent an issue because QoI is not intended to replace network QoS.
Instead, QoI and network QoS are two complementary notions that may be used together.
For instance, using both network QoS and QoI, an application may better understand if
some outdated observations are the result of poor network performances or due to a too-
low sampling rate of sensors. In this case, the notion of “outdated observations” is specific
to an application (e.g., only accept observations not more than 2 seconds old) but may be
different for another application that retrieves observations from the same Sensor Web. QoI
has recently gained attention, in particular within the military domain. Indeed, being able to
assess QoI is sometimes critical, especially in tactical sensors where information dissemination
is constrained by available resources [80].

Quality of Knowledge (QoK) QoK may refer to the quality of the ontology base model or
the quality of the semantic annotation process for a given observation. In particular, some
metrics (such as completeness, coverage and ease to use) have been proposed for Knowledge
management systems [81].

Quality of Observation (QoO) In this thesis, we rely on the QoO abstraction as a quality
dimension that encompasses DQ, QoC, QoI and QoK. In short, QoO refers to the actual value
of an observation for a specific consumer given a specific context. To remain compliant with
previous definitions, we acknowledge the fact that QoO can be impacted by network QoS.
Finally, we consider QoS as the assembly of network-related QoS and observation-related

24

QoS (i.e., QoO). More details on relationships between observation granularity levels, quality
dimensions and QoO are given in Chapter 3 when presenting our Generic Framework for
QASWS.

2.3.2 Metrics and Quality Attributes

OGC SWE specifications have mentioned the need to consider observation uncertainty, which
may be seen as a first step towards QoO characterization. The Common Data Model Encoding
standard [35] mentions the possibility to annotate a measurement value with “any scalar
data component, in the form of another scalar or range value” [35]. However, this standard
does not clearly state which attributes should be used nor how to compute these quality
measures. In [8], the use of Uncertainty Markup Language (UnCertML) [82] is presented
as a potential solution to address observation uncertainty. As previously mentioned, some
ISO standards have also been published to unify the definition and the meaning of quality
attributes. ISO 8000 [34] and ISO 19157 [36] are two examples of quality-related ISO standards
for data and geographic information quality, respectively.

However, in practice, few of these standards have been used to define quality attributes
within Sensor Webs. Instead, many solutions (like the FP7 CityPulse project [37]) have defined
their own quality attributes before delegating QoO management to applications. Table 2.1
surveys some popular quality attributes alongside with their commonly accepted definitions.
Since classifying attributes according to quality dimensions may be a complex task, we rather
indicate which entity (sensor, observation or platform) is mainly characterized when using
each metric. The large number of attributes found in the literature shows that characterizing
QoO is a complex task that may require considering several quality attributes depending on
the application and the considered use case. The QoO attributes the most commonly used are
accuracy, sensor frequency, observation latency, precision and timeliness. Overall these QoO
attributes show that researchers are becoming aware of the fact that sensors should not be
blindly trusted and that the collection process may make some observations unusable.

2.3.3 Popular Ontologies for Sensors and Observations

As previously mentioned, ontologies are an excellent manner to define interoperable concepts
that can be later used to foster observation sharing between several Sensor Webs. Interoper-
ability may also be wanted when defining new quality attributes, in order to 1) enable QoO
standardization across different Sensor Webs and 2) avoid the multiplication of metrics that
sometimes refer to the same notion. For instance, when looking at Table 2.1, frequency, granu-
larity and temporal completeness may all refer to the “number of observations recorded in a
given time span”.

Table 2.2 surveys popular ontologies that have been developed for sensors and observa-
tions:

The O&M-OWL ontology [62] is aligned with OGC SWE concepts and has been used as a
proof of concept to enable semantic Sensor and Observation Service (SemSOS). It does
not mention the integration or definition of any quality attributes.

25

Attribute
name

Common definition Related to
Mentioned

in

Accuracy
Distance between reported observations and the corresponding
phenomenon/event.

Observation
[83, 84, 85,

18]
Frequency,
Granularity,
Temporal

completeness

Number of observations recorded in a given time span. Sensor [85, 18, 86]

Observation
latency, Lag

Time between the moment a value was observed and the mo-
ment this value was reported by the sensor.

Sensor [85, 86]

Precision Significant digits of the observed value.
Sensor,

Observation
[85, 18]

Observation
range

Range of values than can be observed from a sensor. Sensor [85]

Lifetime The time a sensor can function properly/reliably. Observation [85]
Resolution,
Sensitivity

The smallest change that can be detected by a sensor. Sensor [85]

Provenance Sensor or mechanism that has output the observation.
Sensor,

Observation
[84]

Reputation Publicly held opinion of a sensor or any intermediary process. Sensor [84]

Latency
Duration to retrieve an observation (including network trans-
port time).

Platform,
Observation

[84]

Spatiotemporal-
Context,

Coverage

Time and space horizon over which the information product
pertains and for which it is valid.

Observation [84, 86]

Timeliness Time horizon over which an observation is considered as valid. Observation [83, 84]
Confidence Maximal statistical error for an observation. Observation [83]

Completeness
Ratio between the number of received observation over the
number of measured observations (missing values for a given
dataset).

Sensor,
Platform

[83]

Table 2.1 – Survey of quality attributes with their commonly accepted definitions. For more
attributes, see [84].

The SSN ontology [33] has been widely used within many Sensor Webs solutions. Even if first
releases were not completely aligned with OGC SWE concepts, it allows the description of
sensor capabilities (like accuracy, frequency, etc.), i.e., sensor-related quality attributes.

De et al. have developed an ontology [87] for the FP7 IoT-A project. Then, it has been instan-
tiated to several IoT use cases. Apart from the SSN import, it does not mention any
support for quality attributes.

Wang et al. have developed an ontology [88] that also imports concepts and relationships
from the SSN ontology. It allows the definition of several quality attributes for QoS,
network QoS and QoI. Each attribute has the properties “CalculationValue” and “Cal-
culationMethod”. The latter may be a computation method intending to facilitate the
reuse of QoS or QoI information.

The OpenIoT ontology [70] has an interesting focus on virtual sensors, allowing the definition
of “utility metrics”. As utility may be specific to an application and vary over time, this

26

concept can be considered as a QoO-related effort.

The USN ontology [89] is another OGC SWE-aligned ontology developed by members of the
ITU-T. Apart from the SSN import, it does not mention any support for quality attributes.

The SAO and Quality ontologies [90] have been developed in the context of the FP7 City-
Pulse project. These ontologies allow to characterize QoI when dealing with observation
streams. However, they only focus on QoO annotation, without considering the descrip-
tion of potential mechanisms that could be deployed to provide QoO guarantees.

The main trend that appears from this survey relates to a standardization of the ontology
development process: among the ontologies surveyed, 86% of them (6 out of 7) are based on
SSN or import some of its concepts. This wide adoption has rapidly promoted the W3C SSN
ontology as the de facto standard when it comes to knowledge management for sensors and
observations. Some other ontologies also take advantage of the SSN popularity. For instance,
it is the case of the Dolce-Ultralite Upper ontology (DUL) or the ontology for Quantity Kinds
and Units (QU) that are usually imported by ontologies as they are dependencies of the
W3C SSN ontology. Few of the surveyed ontologies (29%) are currently aligned with OGC SWE
concepts but we are confident on the fact that this trend is going to evolve as the W3C will
release the new version of the SSN ontology developed in partnership with the OGC. Besides,
most of the ontologies that are widely used for sensors and observations are developed by
organizations (e.g., W3C and ITU-T) or as part of large research projects (e.g., European FP7
program) that have at their disposal important means for reviewing existing work, developing
new ontologies and promoting them. From 2009 to 2014, it can also be noticed a shift in the
context for which ontologies are developed: while the O&M-OWL ontology was developed for
physical sensors, the De et al. ontology was developed to support virtual sensors within the
IoT. More recently, the SAO and the Quality Ontology have been developed as part of the FP7
CityPulse project to cope with QoO within Smart Cities.

27

Ontology name O&M-OWL
Semantic Sensor

Network (SSN)
De et al. Wang et al. OpenIoT USN

Stream
Annotation

Ontology (SAO) +
Quality Ontoloy

Reference [62] [33] [87] [88] [70] [89] [90]

First release in 2009 2009 2011 2012-2013 2013 2013 2014

Author(s) Henson et al. W3C De et al. Wang et al.
OpenIoT

contributors
ITU-T Kolozali et al.

Project -
Semantic Sensor

Network Incubator
Group

FP7 IoT-A FP7 IoT.est FP7 OpenIoT - FP7 CityPulse

OGC SWE
alignment

X × × × × X ×

Main ontology
imports

GML, OWL-Time DUL, QU
SSN, OWL-DL,
FOAF, OWL-S

SSN, OWL-S,
WGS84, QU

SSN, DUL, Spitfire,
PROV-O, WGS84,

LSM

SSN, OWL-Time,
OpenGIS, FOAF

SSN, PROV-O,
TimeLine, FOAF,

DUL

Use cases,
application

domains

MesoWest
(weather data)
with 52° North

implementation

SENSEI project,
FP7 SPITFIRE, etc.

IoT

Linked Data -
Indoor

Temperature
monitoring

Campus Guide,
Ambient Assisted
Living, Intelligent

Manufacturing
and Logistics,

E-Science
Collaborative
Experiments

Ubiquitous Sensor
Networks, Food

Information
Service

Smart Cities

Definition of
quality attributes

Not explicitly
mentioned.

Description of
sensor capabilities

through
hasMeasurement-

Capability
(accuracy,

frequency, etc.).

Not explicitly
mentioned.

Allows the
definition of QoS,
network QoS and

QoI attributes. For
each attribute,

provides a way to
define its

calculation
method.

Definition of utility
metrics for virtual

sensors.

Not explicitly
mentioned

The Quality
Ontology defines 6

quality
sub-classes:

Accuracy, Cost,
Network-

Performance,
Queuing, Security

and Timeliness.

Table 2.2 – Survey of popular ontologies for sensors and observations

28

2.3.4 QoO Mechanisms and Transformations

Within Sensor Webs, QoO guarantees may be provided by deploying some mechanisms when
QoO level does not meet consumer needs. In the case of SANETs [20, 91], actuators generally
expose some APIs. As a result, these Sensor Webs may use these APIs to adjust the sensor
behavior (e.g., increase the sensing rate of a particular sensor). This mechanism can be
useful to finely meet consumer needs. In the case of Sensor Webs that do not have direct
control over their sensors, mechanisms consist in transformation functions that are directly
applied on observation streams. To cope with challenges related to unbounded observation
streams, non-blocking operators and sliding windows are some techniques that are almost
always considered to implement such mechanisms [92]. Some examples of mechanisms that
may be used to adjust QoO level are observation Filtering, Caching, Aggregation, Fusion and
Prediction. We will describe the service contract of each of them in more detail in the next
chapter. In order to enhance QoO, Sensor Webs should be able to discover and characterize the
service offered in terms of QoO by a mechanism. Indeed, it is not always possible to enhance
QoO depending on sensors, domain-specific considerations or available mechanisms.

From an IoT perspective, the final report [52] of the FP7 IoT-A project has dedicated a
section to the issue of “Ensuring High Quality of Data” (see Section 6.9.4.2 in [52]). This report
recommend to use a “suite of security protocols” (such as SPINS [93]) to “guarantee that an
attack does not affect the remainder nodes in the network and thus preserves data integrity
and freshness”. Even if this conclusion is partly true for physical sensors, it does not hold for
virtual sensors, which may exhibit some capabilities that impact QoO such as their maximum
number of API calls allowed per minute. Moreover, other factors (such as systematic errors,
mechanism processing overhead, etc.) may still affect data integrity and freshness.

2.4 System Adaptation

In order to deliver observations that better meet consumer needs or adjust to situations that
were not necessarily envisioned by developers, Sensor Webs must be able to dynamically adapt
their behavior in response to Context changes. However, as previously mentioned, Context
is a somewhat vague notion and can encompass just as well resources (sensors, available
QoO mechanisms, CPU, battery level, etc.), SLAs but also consumer needs (incoming request,
request removal, request update, etc.). Conceiving adaptive Sensor Webs is a difficult task
that requires 1) to monitor and collect Context changes and 2) to analyze them in order to
take appropriate decisions. In order to achieve these two main features, both Context-aware
systems and the Autonomic Computing paradigm may represent relevant state of the art.

2.4.1 Context-Aware Systems

In [94], Abowd et al. have identified three possible usages of Context within sensor-based sys-
tems, namely Presentation, Execution and Context Tagging. Among these features, Presentation
and Execution are the most relevant features regarding system adaptation:

Presentation feature Context information is used to present relevant observations or ser-

29

vices to the user. So far, this feature has mostly been used in Context-aware mobile
applications [95].

Execution feature Context information is used to automatically trigger tasks to adapt the
global behavior of the system. The difference with the previous use case is that adap-
tation process should remain transparent to the user. This feature is a fundamental
property of smart spaces and smart home environments [96].

Closer from our approach to provide QoO-based adaptation, some Context-aware sys-
tems have provided adaptation based on QoC. For instance, INCOME [97] is a Sensor Web
for Context distribution that enable QoC-based adaptation. At runtime, this Sensor Web
can dynamically change its behavior by deploying additional mechanisms (such as Fusion,
Aggregation, etc.).

Finally, depending on the complexity of their adaptation process, the presence of some
adaptation loop(s) or the possibility for a stakeholder to express high-level business rules as
system goals, some Context-aware systems may be qualified as “autonomic” systems, a term
that derives from the Autonomic Computing paradigm.

2.4.2 Autonomic Computing

First Sensor Webs were characterized by an active collaboration between pods. For instance,
in case of a pod failure, its neighbors could increase their sensing rate to keep providing an
acceptable spatiotemporal granularity. This behavior can be seen as a kind of autonomic
behavior, where the system can change its behavior and automatically reconfigure itself.
In that, the Autonomic Computing (AC) paradigm [42, 98, 99] can be relevant to enable
autonomic adaptation. IBM has defined Autonomic Computing as the ability of systems to
“manage themselves given high-level objectives from administrators” [42]. The term “autonomic”
is a reference to most decisions that are taken automatically by the human body without any
external help. Autonomic systems relieve end-users to manually implement logic to comply
with their needs. In [42], IBM has identified four self-* fundamental adaptation properties for
autonomic systems (self-configuration, self-optimization, self-healing and self-protection).

Adaptation Control Loops Since the AC paradigm makes a clear distinction between goals
and means, it is commonly considered as a convenient way to build interoperable, lasting
and easy-to-use systems where users only express some high-level business rules. To achieve
the AC vision, IBM has proposed a reference model for autonomic control loops, which is
called the MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge base) loop and is depicted in
Figure 2.3. By definition, autonomic systems are a set of Autonomic Elements. Each of these
elements is composed of one or many Managed Elements controlled by a single Autonomic
Manager. The latter continuously monitors the internal state of its different Managed Elements;
then analyzes this information; and finally takes appropriate decisions based on both its
knowledge base and high-level objectives. At last, these decisions are converted into actions
and transmitted to appropriate Managed Elements for execution. These different steps form
the MAPE-K adaptation control loop, also denoted as “MAPE-K loop” in the rest of this paper.

30

Adaptation loops can be useful to break a complex strategy into different steps, simplifying its
management while allowing to deal with growing complexity. Over time, several adaptation
control loops have been proposed, not only in sensor or software fields. For instance, the
OODA (Observe, Orient, Decide, and Act) loop [100] had been proposed by John Boyd –a
military strategist– and applied to combat operations process.

Autonomic Manager

Managed Element

Managed Element Touchpoints

Sensors Effectors

Execute Monitor

Plan Analyze

Autonomic
Element

Knowledge

Symptoms
Requests

for Changes
Changes

Plans

Actions Events

Figure 2.3 – Structure of an Autonomic Element within the Autonomic Computing paradigm

Autonomic Maturity Levels In this thesis, in order to quantify how autonomous a Sensor
Web is or should be, we reuse the work of IBM on the five levels of autonomic maturity [98]:

Basic (level 1): at this level, no customization is feasible by consumers. The entire behavior of
the system is hard-coded by developers at design phase. Developers manually perform
system monitoring and update the different elements and components accordingly.

Managed (level 2): at this level, adaptation is based on predefined rules written by applica-
tions or developers. These rules are simple (if a then b for instance) and are generally
written by a skilled person.

Predictive (level 3): predictive behavior is reached with the implementation of reasoning
processes in some components of the Sensor Web. These processes may consist in
complex treatments (observation Prediction, Fusion, etc.) but they must not take into
account any macroscopic goal. At this maturity level, components provide simple
adaptation and are generally selfish entities.

Adaptive (level 4): adaptive behavior is characterized by the definition of SLAs. SLAs mostly
correspond to the definition of consumer profiles with specific needs (including QoO
ones). At this maturity level, local components take into account SLAs to self-adapt their

31

behavior. Moreover, the whole system may also support re-configuration with dynamic
selection and composition of sensor sources.

Autonomic (level 5): the last maturity level is the autonomic one. We assume that a Sensor
Web is fully autonomic when its behavior is driven by the expression of business rules
expressed by final consumers. An autonomic Sensor Web implements continuous
adaptation control loop(s). It automatically derives appropriate SLAs from these rules
and distributes them to its different entities. Then, these autonomic entities adapt their
behavior accordingly and collectively fulfill consumer needs.

Research in the AC field is particularly relevant to adaptive Sensor Webs. Up to now, the AC
paradigm has been mainly applied to Context management within ubiquitous sensor net-
works [101], for QoS management within ESB [44], for self-management and scalability within
M2M environments [45], or more recently for cognitive reasoning within Healthcare [46].

2.5 Survey of Existing Work

The goal of this section is to provide an overview of the most representative QoO-aware
and/or adaptive Sensor Webs. By analyzing a significant number of solutions, we wanted to
1) highlight current trends about QoO and adaptation-related mechanisms and 2) identify
potential gaps to be filled by future solutions.

2.5.1 Methodology

To perform this review in a rigorous manner, the following three-step methodology was used:

1. Prior to analyzing solutions, we selected some of them that were related to QoO. For our
study, a QoO interest was assumed from the moment where the authors of a solution
discussed (in a peer-reviewed publication or in the software documentation) about
any of the quality dimensions introduced in Section 2.3.1. As expected, it turned out
that a large number of Context-aware sensor middlewares met this criterion. In order
to decide if a solution should be integrated into our survey, we then analyzed its QoO
management (metrics used, mechanisms, adaptation features and originality) and its
compliance regarding standards (mostly OGC SWE and W3C SSN). Because network
QoS has a direct impact on QoO, we also investigated mechanisms that could provide
QoS guarantees and therefore improve overall QoO. We ranked these solutions based on
the number of quality metrics and mechanisms found, as well as on the average number
of citations of each solution from Google Scholar (minimum of 15 citations). We also
investigated the Related Work for each selected solution to identify whether a solution
was inherited from another one (reuse or extension). We ended up with 30 Sensor Web
solutions implemented between 2003 and 2017.

2. The second phase consisted in the extensive analysis of these 30 solutions. In order to
have an overview of each solution features, we selected the most complete peer-reviewed
research papers that described it. In the case of projects or open source solutions, we

32

also browsed documentation and official websites when available. Section 2.5.2 briefly
summarizes the main features offered by each Sensor Web solution. The proposals
marked with an asterisk (*) are closer to our work and, therefore, are discussed more
thoroughly in Section 2.5.3.

3. In order to synthesize our findings, we gathered the 30 surveyed solutions into the
Table 2.3. Each row represents a Sensor Web solution while the columns refer to the
different features that it provides, which may help to address the three main research
challenges previously identified (integration, QoO and adaptation). For a better readabil-
ity, we use abbreviations that are detailed in Appendix B. A dash symbol (-) indicates that
the solution does not implement/support a feature or that this feature is non applicable
for the Sensor Web considered.

2.5.2 Relevant Solutions for the Considered Challenges

IrisNet [102] is an agent-based Sensor Web solution. It is composed of Sensing Agents and
Organizing Agents. Users can customize the behavior of Sensing Agents by writing custom
functions called “senselets”. These functions are then applied to Raw Data feeds coming from
sensors in order to report Information to an Organising Agent. Computation may also been
distributed among several agents, with the use of shared memory pools. IrisNet provides a
service-specific database abstraction for observation storage: for a given service, observations
are distributed and retrieved among the participating organising agents in a hierarchical way.

Jiang et al. [103] have proposed a Sensor Web solution for tactical sensor networks. This
SOA-inspired solution is based on the notion of Sensor Web Services. According to the authors,
Sensor Web Services are Semantic Web Services that act as wrappers to communicate with
physical sensors. These web services semantically describe their capabilities using the DARPA
Agent Markup Language - Service (DAML-S) ontology. Then, users can create custom Infor-
mation workflows according to their needs. These workflows are performed with a distributed
Peer-to-Peer Fuselet Network. Within this network, sensor observations are routed through
several signal processing fuselets that may apply some data fusion algorithms called “fuselets”.
This Sensor Web solution also supports dynamic reconfiguration by allowing manual workflow
modification and fuselet addition.

Ranganathan et al. [75] have proposed a middleware for Context distribution within
ubiquitous computing environments. This distributed middleware is built on top of CORBA10

technology and uses an object-oriented model. Using agents, this solution aims to collect,
process and deliver Context to Context-aware applications. For this solution, the authors
envision Context Providers as a kind of virtual sensors that only produce Context information.
They may use some reasoning or Prediction before sending Context to Context Synthesizers.
These agents are in charge of collecting and processing the received Context in order to deduce
or infer higher-level Context. Within the whole solution, ontologies are used to describe
Context Predicates according to a <Subject, Verb, Object> triple template.

MiddleWhere [104] is a Sensor Web destined to provide location service from heteroge-
neous sensing location sources (GPS, RF badge stations, personal computers, etc.). This

10Common Object Request Broker Architecture

33

solution characterizes the “quality of location information” with the computation of three
metrics (resolution, confidence and freshness). To improve quality of location information and
better answer to queries, MiddleWhere enables Filtering and Fusion of location information.

MASTAQ [105] solution targets consumers that use sensor data for environmental moni-
toring. Using a statistical QoI API, these consumers can add QoI requirements to their queries.
For instance, standard deviation and confidence level are two metrics used within MASTAQ to
specify QoI-based SLAs. When meeting consumer needs, this Sensor Web takes into account
the trade-off between observation accuracy and energy consumption. To dynamically adapt
the number of activated sensors, the solution uses a Proportional-Integral-Derivative (PID)
controller.

Global Sensor Network (GSN) [106] solution is a component-based distributed solution
that relies on the virtual sensor abstraction. A virtual sensor may be any kind of sensor (physi-
cal, virtual or logical) and hide implementation details for observation retrieval. Virtual sensors
may have one or several inputs (including from other virtual sensors) but have exactly one
output observation stream. Each virtual sensor supports window processing and continuous
queries. To improve scalability, GSN relies on a peer-to-peer architecture combined with a
decentralized storage. A publish/subscribe mechanism is employed to retrieve observations.
With the use of TEDS IEEE 1451 standard, GSN allows sensor discovery and dynamic sensor
plug-and-play.

BIONETS [107] is a bio-inspired Sensor Web for Context distribution. It considers three
main entities: Context-aware Applications, Context Sources and Context Relays. The solution is
implemented on top of a peer-to-peer REST-based framework, designed to be used in highly
dynamic environments (such as ad-hoc or opportunistic computing). Context is semantically
annotated and stored within different Context Relays, in a distributed way. BIONETS uses a
pheromone system (with accumulation, evaporation and spreading mechanisms) to weight
and cache observations of interest.

Sensor Web Agent Platform (SWAP) [24] is a Sensor Web based on the OGC SWE stan-
dards. This framework addresses the lack of semantics of OGC SWE 2.0 standards, aiming to
facilitate the development of Sensor Web applications. SWAP still exposes OGC SWE services
as non-agent resources. However, compared to OGC SWE standards, SWAP combines SOA
and Multi-Agent Systems (MAS) paradigms. Ontologies are used at conceptual level to de-
scribe observations and at technical level to describe agent capabilities. This semantic-based
representation allows agents to process and reason about observations retrieved from sensor
agents.

SenseWeb [108] is a Sensor Web created by Microsoft. This proposal envisions the “Shared
Sensing” paradigm. Within this solution, observations are uploaded and stored into SenseDB,
a sensor-streaming database. Applications can submit queries either to the central Coordina-
tor (Raw Data level) or Transformers (Information level). To insure scalability, observations
are only retrieved on demand according to application queries and are reused whenever it is
possible. Queries may contain network QoS and QoI requirements (with tolerance). In order
to optimize sensor selection, the coordinator can learn their characteristics at runtime.

Bouillet et al.* [109] have proposed a semantic-based Sensor Web to cope with heteroge-
neous sensor networks. Their solution relies on Processing Elements (PEs). A PE is a reusable

34

component that can take several observation inputs, process them according to defined rules
and outputs a new stream. Each PE is semantically described with the use of ontologies to
enable composition and chaining. When a user request arrives, the system performs dynamic
PE selection and composition to build a data flow pipeline able to output the desired end
results. This pipeline may contain a PE source, none or several intermediary PEs and a PE sink.

AcoMS [101] is a Sensor Web for Context distribution. It supports queries with QoI require-
ments by considering uncertainty, frequency and accuracy metrics. This solution complies
with the AC paradigm by implementing several self-* features such as self-configuration,
self-reconfiguration and self-healing. Regarding sensors, the jointly use of TEDS IEEE 1451
standard and semantics allows dynamic sensor discovery and composition.

SEAMONSTER [110] is a concrete Sensor Web deployment for glacier and watershed
monitoring in Alaska. This solution is based on a Multi-agent Architecture for Coordinated,
Responsive Observations platform. The main purpose of SEAMONSTER is to meet different
mission goals (i.e., application requests) while optimizing available resources in highly dy-
namic environments. The system adaptation is continuously performed by agents (for local
adaptation) and server-based agents (for mission objectives).

Wieland et al. [111] have modified an existing Sensor Web to support observation uncer-
tainty. Their solution allows Context-aware applications to specify QoC requirements. Within
this solution, sensors are in charge to annotate Context (when possible) with additional meta-
data such as “reliability” or “resolution” attributes for later reasoning. Using Business Process
Execution Language (BPEL) and previous metrics, users may define some Context-aware
workflows in order to process and reduce uncertainty of Context (e.g., with Filtering or Fusion).

Pathan et al.* [112] have combined Sensor Web vision with the AC paradigm. The solution
integrates a MAPE-K loop. Adaptation and reconfiguration are triggered according to the
events collected from the underlying sensor network. Within this solution, sensors capabilities
and observations are semantically described using the W3C SSN ontology. The implemen-
tation is inspired by SOA and relies on an Enterprise Service Bus (ESB) that allows sensor
plug-and-play and self-(re)configuration according to application scenarios and Context.

CAPPUCINO [113] Sensor Web enables Context-awareness for Web Services within ubiq-
uitous environments. Implemented following a Service Component Architecture (SCA), it
is composed of three main components: a MAPE-K loop, an execution kernel and a Context-
aware module. This Context-aware module abstracts sensors as reusable Context nodes able to
collect Context. These nodes can be chained and customized with Context operators (e.g., Fu-
sion or Filtering functions) in order to generate Context reports. These reports feed the MAPE-K
loop and may be used to trigger dynamic Web Services adaptation and reconfiguration.

52°North Sensor Web [8] is a suite of standardized Sensor Web components. Based on
OGC SWE 2.0 standards, it provides a concrete implementation of data encodings and Web
Service interfaces that can be reused to build standardized Sensor Web solutions. In accor-
dance with SWE 2.0 standards, this solution does not explicitly consider any quality dimension.
Instead, it is up to researchers to extend data encodings with the desired quality attributes.

Teixera et al.* [114] have proposed a Service-Oriented middleware for the IoT. Its main
focus is to ensure interoperability and scalability while considering a large number of un-
derlying sensors. The authors use semantics to describe observations (Domain Ontology),

35

sensors (Device Ontology) and possible QoO adaptation mechanisms (Estimation Ontology).
These mechanisms are estimation models (e.g., “linear interpolation”) that may be used
to design dataflows. Once selected by the mean of an approximately optimal composition
mechanism, a dataflow may be executed to meet user requests.

Semantic Network Monitoring, Analysis and Control (SNoMAC) [115] is a Sensor Web
for network monitoring and control. This solution relies on the NetCore ontology, which may
be extended with ontologies specified within network adapters. This design allows the use of
SNoMAC over various networks, which use different communication protocols (UPnP, TR-069,
etc.). The final ontology used within SNoMAC considers three entities: Networks, Nodes and
Links. A Node and a Link may have an associated State while only Nodes expose Actions which
they can locally perform. To demonstrate the SNoMAC’s extensibility, authors present an
integration example with the SIXTH sensor middleware.

The Linked Stream Middleware (LSM) [116] is a solution which enables Linked Data [57]
for observation streams within Sensor Webs. The Linked Data paradigm consists in publishing
and organizing data from different sources through the Web. Even if this Sensor Web does
not provide any adaptation nor observation quality features, it allows access to various sensor
data sources through different wrappers. These wrappers allow to semantically annotate
observations coming from physical sensors (with physical wrappers), other systems including
other Sensor Webs (with mediate wrappers) as well as databases (with LD wrappers). The
semantic annotation of observations is achieved using the W3C SSN ontology.

Kali2Much [117] is a Sensor Web for adaptive collection and distribution of Context.
Context-aware applications may submit queries to Kali2Much by semantically specifying
what they need as Context. Like many Context distribution systems, this solution follows
a Data flow architecture. Each query triggers a reconfiguration of the Sensor Web in order
to create a Context flow pipeline composed of KaliSensors, Context Collectors and Context
Transformers. The behavior of Context Collectors can be customized with consumer rules. The
main goal of Context Transformers is to perform unit conversion and to adapt representation
according to consumer needs.

MobIoT [118] is a Sensor Web that aims to address challenges of mobile IoT. MobIoT revisits
Service-Oriented Architecture by proposing a “Thing-Based” SOA relying on an environment-
aware middleware. This solution addresses unknown topology and scalability considerations
with internal probabilistic mechanisms (for both providers registration and consumers look-
up). It also uses semantics to cope with sensor and observation heterogeneity. To query
MobIoT, consumers may submit Thing-based queries characterized by a Physical concept, a
Unit and a Location. Lastly, consumers may extend a concept ontology by specifying their
own “fusion functions”.

INCOME [97] is a QoC-based Sensor Web for Context distribution. It allows consumers
to express SLAs containing their QoC needs. The distribution of Context is then performed
according to the consumer needs, in a distributed way between Context producers. INCOME
framework can be divided into two main components: muContext for SLAs specification and
filter creation; muDEBS for the implementation and the routing of Context among brokers.
Within muContext, some components called Context processing capsules may perform high-
level processing and reasoning tasks on Context (Fusion, Aggregation, etc.).

36

DQS Cloud [119] is a Cloud-based Sensor Web for sensor services. The authors mention
DQ as a core requirement of their system. However, in order to be consistent with the previous
definitions on quality dimensions (see Section 2.3.1), we rather consider that this solution
provides QoI support. DQS Cloud performs sensor selection based on both content and quality
feed. DQS Cloud can plan feed processing workflows either on gateways or Cloud servers to
optimize both bandwidth and battery consumption. By assuming control on its observation
providers, DQS Cloud is able to provide recovery in case of QoI degradation or sensor failures.

CASSARAM [120] is a Context-aware tool to enable the “Sensing as a Service” paradigm.
Inspired from the Cloud Computing paradigm, this service model consists in selecting an
optimal subset of sensors based on some QoI attributes (such as availability or accuracy for
instance). CASSARAM reuses the W3C SSN ontology to 1) semantically describe sensor capa-
bilities and 2) characterize observations with Context annotation. The authors demonstrate
that CASSARAM can be easily added to an existing Sensor Web by presenting an integration
example with the GSN solution. It should be noted that CASSARAM tool only provides infer-
ence on sensor capabilities and does not provide additional common QoO mechanisms (like
observation Filtering or Caching for instance).

SIXTH [29] is an OSGi-compliant11 Sensor Web solution. The solution uses several software
design patterns and proposes several object-oriented models to represent sensors, queries, ob-
servations, etc. These models are generic enough to be customized and extended, as shown by
the evaluation section and the numerous considered use cases. The observation distribution is
done through a Data Broker component, which implements the publisher/subscriber design
pattern. Regarding adaptation, SIXTH supports runtime reconfiguration with the definition of
Tasking Messages. This solution also enables runtime reconfiguration features.

OpenIoT* [121] is an open source Sensor Web for the IoT. It allows on-demand access to
IoT services through a Cloud-based architecture while enabling the Linked Data paradigm.
OpenIoT is based on X-GSN, an extended version of the GSN solution. Compared to GSN, X-
GSN adds support for the semantic annotation of observations according to a domain-specific
ontology. OpenIoT envisions observation collection from mobile sensors through CUPUS, a
quality-aware publish/subscribe middleware. This CUPUS middleware supports both network
QoS and QoI requirements and may provide observation pre-processing to reduce the battery
consumption on mobile devices. This can be achieved by performing observation Fusion or
observation Filtering with a sliding window for instance.

Kibria et al. [122] envisions the “Web of Objects” (WoO) and provides a three-tier Sensor
Web architecture. This architecture comprises Virtual Objects, Composite Virtual Objects and
Service levels. This solution semantically describes its services, resources and devices with
custom ontologies. It also considers both Sensors and Actuators as virtual objects that can be
reused to build composite virtual objects. The whole adaptation process is Context-aware and
involves reasoning and inference. When needed, reconfiguration is triggered and achieved
with dynamic service composition.

CityPulse* [37] project is a framework for providing large-scale stream processing solu-
tions to Smart City applications. This Sensor Web offers a significant number of adaptation
mechanisms. Regarding semantics, CityPulse provides ontologies (with the “Quality Ontology”

11https://www.osgi.org

37

https://www.osgi.org

System
Integration QoO Adaptation

Sensor Web
solution

R
ef

er
en

ce

Ye
ar

O
b

s.
le

ve
ls

su
p

p
o

rt
ed

St
an

d
ar

d
-c

o
m

p
li

an
t

Se
m

an
ti

c
se

n
so

r
d

es
c.

Q
u

al
it

y
d

im
en

si
o

n
s

Se
m

an
ti

c
o

b
s.

an
n

o
t.

Q
o

O
m

ec
h

an
is

m
s

A
d

ap
t.

co
n

tr
o

ll
o

o
p

A
u

to
n

o
m

ic
m

at
.l

ev
el

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

IrisNet [102] 2003 RD, I - - - - Cach, Filt - 2
Jiang et al. [103] 2003 RD, I v X - - Fu, Filt - 3

Ranganathan [75] 2003 I v - - X Pred - 3
MiddleWhere [104] 2004 I - - QoI - Fu, Filt - 3

MASTAQ [105] 2005 I - - QoI - Pred - 4

GSN [106] 2006 RD, I v - Cont -
Fu, Form,

Filt
- 3

BIONETS [107] 2006 I v - QoI X Cach - 2
SWAP [24] 2006 K X X - X Fu, Form - 2

SenseWeb [108] 2007 RD, I - - QoS, QoI - Cach, Form - 3
Bouillet et al.* [109] 2007 K v X Cont, QoI X Form, Filt - 4

AcoMS [101] 2008 I v X QoS, QoI - Form, Filt X 5
SEAMONSTER [110] 2009 RD - - QoS, Cont - - X 5
Wieland et al. [111] 2009 I v - Cont, QoI - Fu, Filt - 4
Pathan et al.* [112] 2010 K v X Cont X - X 5
CAPPUCINO [113] 2010 - v - - - Fu, Filt X 5
52°North SW [8] 2011 RD, I X - - - Fu, Filt - 2
Teixera et al.* [114] 2011 I v X - X Fu, Filt, Pred - 3

SNoMAC [115] 2012 K v X QoS - - - 1

LSM [116] 2012 K v X - X
Cach, Fu,

Filt
- 1

Kali2Much [117] 2014 I - X - X Form, Filt X 5

MobIoT [118] 2014 I, K v X - X
Fu, Form,

Pred
- 3

INCOME [97] 2014 I - - Cont -
Fu, Form,

Filt
- 4

DQS Cloud [119] 2014 RD, I - -
QoS, Cont,

QoI
- Filt - 4

CASSARAM [120] 2014 K v X Cont, QoI X - - 4
SIXTH [29] 2015 I v - Cont - Form, Filt - 4

OpenIoT* [121] 2015 K v X
QoS, Cont,

QoI
X Fu, Filt - 4

Kibria et al. [122] 2015 K - X QoI X Cach, Pred - 4

CityPulse* [37] 2016 K v X
QoS, Cont,

QoI
X

Cach, Fu,
Form, Filt,

Pred
X 5

FAPFEA [25] 2016 - X - - - Pred X 5
OrganiCity [123] 2017 RD v v QoI v Pred - 3

Table 2.3 – Survey of 30 Sensor Web solutions designed between 2003 and 2017. For abbre-
viations used, see Appendix B. Solutions marked with an asterisk (*) are close to the QASWS
approach and are discussed more in detail in Section 2.5.3.

38

and the “Stream Annotation Ontology” among others) aligned with the W3C SSN ontology.
These ontologies have been specifically defined to address QoI characterization and QoI as-
sessment for observation streams. To compute QoI, CityPulse uses custom-defined collection
point-related Key Performance Indicators (KPIs). Many reusable tools and components (such as
the CityPulse QoI Explorer for instance) have been developed for this project and are available
online at a public repository12.

FAPFEA [25] is a proactive solution that aims to increase availability of Web Service in the
Sensor Web field. This proposal follows the OGC SWE standards and architecture. The authors
have developed a special virtual sensor, called Proximity Sensor Service, used to predict next
response times and estimate replication requirements. These estimations are performed using
Fuzzy Logic in order to reduce decision uncertainty. This mechanism triggers the system
reconfiguration. In case of failure or a poor response time, a given Web Service is replicated on
another server and the previous instance is decommissioned.

OrganiCity [123] is a European H2020 project that enables any Smart City stakeholder to
experiment with urban data. To this end, OrganiCity relies on a Sensor Web (OC Platform
tier). Unlike previous Sensor Webs, the OrganiCity platform does not use ontologies but
relies on OpenAPI Specification (OAS)13 to expose assets, attributes and meta-data through a
RESTful API14. Even if OrganiCity provides basic support for QoI (with Reputation Service) and
prediction feature for missing data, it primarily focuses on providing a framework to enable
Experimentation as a Service (EaaS) for “citizens, businesses, NGOs, research labs and academia
with a diversity of learnings”. By considering several stakeholders with different goals and
interests, OrganiCity represents a unique collaborative Sensor Web for urban data.

2.5.3 Discussion

From the surveyed solutions, we identified 5 Sensor Webs particularly close to the QASWS
approach. These solutions are the Sensor Web developed by Bouillet et al. [109], the one
developed by Pathan et al. [112], the one developed by Teixera et al. [114], OpenIoT [121] as
well as CityPulse [37]. This section is dedicated to the analysis of the different trends for these
specific proposals (i.e., features but also potential limitations) when it comes to the three
research challenges previously identified:

To cope with integration-related challenges All 5 Sensor Webs provide ways to integrate het-
erogeneous sensors. Most of the time, they use SSN-based ontologies to describe sensor
capabilities and abstract them as a single entity kind (e.g., only consider virtual sensors).
None of them are fully compliant with OGC SWE concepts but this can be explained by
the use of the non-aligned first release of the SSN ontology. The issue of semantic integra-
tion is also well addressed, except within the solution of Pathan et al. where ontologies
are not used to unify heterogeneous observations. Regarding observation consumers,
OpenIoT and CityPulse solutions provide more ways to query and retrieve observations

12https://github.com/CityPulse
13https://www.openapis.org
14A RESTful API is a way of exposing resources in an interoperable manner according to the REpresentational

State Transfer (REST) principles. More information can be found on http://www.restapitutorial.com.

39

https://github.com/CityPulse
https://www.openapis.org
http://www.restapitutorial.com

than other Sensor Webs (graphical Web-based editor to define queries, dashboards,
QoI Explorer, APIs, etc.), in part due to the fact that these two solutions are intended
to be used by various stakeholders with different skills. Regarding scalable integration,
Bouillet et al. and Teixera et al. focus on lazy on-demand sensor discovery triggered
by user queries, which allows to integrate more sensors as only few of them are used
at a given time. Differently, Pathan et al. rely on an ESB to provide service mediation,
orchestration and use the Publish/Subscribe software design pattern for observation
distribution. Finally, both OpenIoT and CityPulse use Publish/Subscribe message bro-
kers for observation distribution while envisioning Cloud-based deployment for more
intensive processing tasks.

To allow QoO needs and provide QoO guarantees While solutions from Pathan et al. and
Teixera et al. do not allow the creation of QoO-based SLAs, the Sensor Web developed
by Bouillet et al. supports QoI constraints within user’s semantic queries. Also relying
on ontologies for the construction of their queries, OpenIoT and CityPulse go further
and allow consumers to submit QoO-based SLAs, which can contain both network QoS
and QoI constraints. However, it should be noted that the set of constraints that can be
expressed within these two Sensor Webs is restricted by the underlying available QoO
mechanisms. Indeed, even if all 5 Sensor Webs provide QoO mechanisms that can be
composed to satisfy more complex consumer needs, their main limitation concerns
their lack of evolutivity as they generally do not accept the addition/removal of custom
QoO mechanisms written by domain-specific experts. A possible explanation for this
trend might be that it is a complex task to make the link between sensor capabilities,
QoO characterization (with attributes) and QoO guarantees (with mechanisms and
composition).

To provide system adaptation Despite the lack of adaptation for the solutions developed
by Bouillet et al. and Teixera et al., system adaptation is generally a core feature for
Sensor Webs. However, its implementation may differ from one solution to another.
For instance, OpenIoT does not rely on a typical control loop but take advantage of
the capabilities of its mobile sensors instead to enable sensor-oriented Context-aware
features (such as automatic sensor registration and data announcement). Differently,
Pathan et al. and CityPulse both use adaptation control loops that process Context
information to dynamically determine in real-time if a (re)configuration of the system
is needed. As previously mentioned, QoO-based adaptation strongly depends on the
underlying QoO mechanisms that are available. For this reason, the solution of Teixera
et al. provides partial support for adjusting the QoO level, being only able to predict
some missing observation points with ontology reasoning. In comparison, OpenIoT
and CityPulse solutions provide greater automatic QoO-based adaptation using more
mechanisms such as observation Filtering, Fusion or Aggregation. However, about these
two solutions, we have noted some limitations regarding how the QoO is computed,
which might be not necessarily representative of the actual QoO experimented by final
consumers. Besides, feedback provided by these Sensor Webs to their consumers was
generally insufficient to be really meaningful, even for domain-specific experts.

40

Bouillet
et al.
[109]

Pathan
et al.
[112]

Teixera
et al.
[114]

OpenIoT
[121]

CityPulse
[37]

QASWS
approach

In
te

gr
at

io
n Heterogeneous sensors X X X X X X

Heterogeneous stakeholders - - - X X X
Semantic integration X v X X X X
Scalable integration - - - X X X

Q
o

O

QoO-based SLAs v - - X X X
Available QoO mechanisms X X X X X X

QoO mech. composition X X X X X X
Custom QoO mechanisms - - - - - X

A
d

ap
t. Adaptation control loop(s) - X - - X X

Context used for (re)config. - X - X X X
Auto QoO-based adaptation - - v X v X

Table 2.4 – Feature comparison for some Sensor Webs close to the QASWS approach (X: sup-
ported,v: partially supported, -: not mentioned)

Based on these trends, we argue that future Sensor Webs should provide a better synergy
between integration, QoO and system adaptation (see the features required by the “QASWS
approach” in Table 2.4). In particular, they should allow domain-specific experts to define
their own custom QoO mechanisms but also to access meaningful feedback regarding system
adaptation. On this matter, we acknowledge the need for a control loop to monitor Context
changeability and automatically discover new resources of interest such as sensors or QoO
mechanisms. Furthermore, ontologies seems to be a promising way to better make the link
between sensor capabilities, QoO characterization and QoO guarantees, on the condition to
precisely describe the service model offered by these QoO mechanisms. This may help Sensor
Webs to automatically select, compose and deploy them in order to adjust the QoO level.

2.6 Summary of the Chapter

In this chapter, we have provided an overview of the main research areas to which this thesis
belongs. Based on a rigorous study of the state of the art, we first described the different tech-
niques and approaches used by Sensor Webs (whether sensor middlewares or IoT platforms)
to cope with the three research challenges mentioned in Chapter 1.

Then, we performed an extended survey of 30 Sensor Web solutions that allowed us
to extract some general trends regarding the relevance of the different approaches within
concrete systems. In particular, five of the surveyed solutions turned out to be close to
the QASWS approach envisioned in this thesis and, therefore, have been subject to a more
detailed discussion. Overall, we noticed that most of current Sensor Webs do not fully address
integration, QoO and system adaptation issues, which can be an issue to deal with emerging
paradigms such as the IoT or the IoE.

41

Based on the study of existing Sensor Web solutions, we note that there is still an insuffi-
cient focus on:

• integration and extensibility as initial requirements for Sensor Webs, in order to enable
the integration of new kinds of sensors (e.g., virtual ones) that produce heterogeneous
observations of diverse quality;

• interoperability and awareness regarding QoO, in order to allow the expression of
consumer-specific needs, the development of custom mechanisms as well as the auto-
matic deployment and composition of these mechanisms to adjust the QoO level when
applicable;

• resource-based and QoO-based dynamic adaptation, in order to cope with Context
changeability (sensor failure, dynamic consumer needs, etc.) and long-term evolu-
tivity (new quality attributes, new quality mechanisms, new processes, etc.) while
providing meaningful feedback to consumers.

Consequently, this thesis envisions QoO-aware Adaptive Sensor Web Systems (QASWS)
as one of the possible paths to conceive Sensor Webs that adjust QoO in an consumer-specific
manner given sensor capabilities, fulfilling as closely as possible the original Sensor Web vision
within heterogeneous environments such as the IoT. The next chapter will detail our first
contribution that consists in a generic framework for designing, implementing and deploying
such systems.

42

Chapter 3
Generic Framework for QoO-aware
Adaptive Sensor Web Systems

“Data is not information, information is not knowledge, knowledge is not understanding,
understanding is not wisdom.”

- Clifford Stoll

Contents

3.1 Introduction . 44

3.2 Motivation and Methodology for a new Framework 45

3.2.1 Terminology Used . 45

3.2.2 Limitations of Existing Frameworks . 45

3.2.3 General Requirements . 49

3.3 QASWS Reference Model . 49

3.3.1 Functional Model . 50

3.3.2 Adaptation Model . 51

3.3.3 Domain Model . 54

3.3.4 Observation Model . 57

3.4 QASWS Reference Architecture . 63

3.4.1 Functional View . 63

3.4.2 Observation View . 64

3.4.3 Adaptation View . 67

3.4.4 Deployment View . 68

3.5 QASWS Reference Guidelines . 71

3.5.1 General Technological Choices . 71

3.5.2 Architectural Choices . 72

43

3.5.3 Observation Formatting and QoO Characterization 72

3.5.4 Semantics and Ontologies . 72

3.5.5 Storage and Observation Retention . 73

3.5.6 System Adaptation . 74

3.5.7 Deployment . 74

3.5.8 Performances and Evaluation . 75

3.6 QASWS Framework Evaluation . 76

3.6.1 Compliance with General Requirements 76

3.6.2 Comparison with Related Work . 79

3.6.3 Discussion . 79

3.7 Summary of the Chapter . 80

3.1 Introduction

Despite the large development of several Sensor Web frameworks, custom non-standardized
solutions are regularly designed from scratch by researchers. As previously mentioned, this
trend can be explained by several reasons, such as the complexity to reuse existing stan-
dards (like OGC SWE specifications) or the lack of functionalities within existing solutions (e.g.,
semantic support, QoO, etc.) for instance. Among this myriad of solutions, we have shown
in Chapter 2 that few of them focused enough on integration, QoO and system adaptation
considerations (i.e., the research challenges considered in this thesis).

We believe that these limitations are the direct consequence of a lack of methods and
guidelines to conceive QoO-aware Adaptive Sensor Web Systems (QASWS). Indeed, QoO
considerations can hardly be found in most of architecture frameworks. To emphasize this
statement, we highlight limitations regarding existing architecture frameworks’ in Section 3.2.2.
Unlike Trust, Security or even Privacy requirements that seem to gain in importance within
these frameworks (e.g., considered as cornerstone requirements in the FP7 IoT-A project),
QoO is often mentioned as a further requirement that need to be addressed by applications
themselves. In contrast, we argue that QoO should be considered as a mandatory property
that needs to be taken into account from the design phase when conceiving a new Sensor Web.

As a result, this chapter presents the first contribution of this thesis, which is a generic
framework for the design, development and deployment of QASWS. This QASWS framework
has been developed with strong genericity in mind, such that it can later be applied to several
use cases and deployment scenarios. In order not to reinvent the wheel, we reuse the inter-
national standard ISO/IEC/IEEE 42010 for Architecture description (Systems and software
engineering) [124, 125]. First, this chapter motivates the need for a new generic framework
and describes the methodology we followed for its elaboration. Then, it successively intro-
duces the three components that compose the framework, namely a Reference Model, a
Reference Architecture and Reference Guidelines. Finally, this chapter evaluates our generic
framework according to its initial requirements and positions our contribution regarding other
architecture frameworks and reference models.

44

3.2 Motivation and Methodology for a new Framework

3.2.1 Terminology Used

In order to better describe the different specifications that compose our generic framework for
QASWS, we first remind the definition of some key terms and concepts defined and used by
the ISO/IEC/IEEE 42010 standard:

Architecture An architecture is defined as the “fundamental concepts or properties of a system
in its environment embodied in its elements, relationships, and in the principles of its
design and evolution” [126].

Architecture Description (AD) An AD is a “work product used to express the Architecture of
some System Of Interest. The Standard specifies requirements on ADs. An AD describes a
possible Architecture for a System Of Interest. An AD may take the form of a document, a
set of models, a model repository, or some other form” [126].

Architecture View An Architecture View in an AD expresses “the Architecture of the System
of Interest from the perspective of one or more Stakeholders to address specific Concerns,
using the conventions established by its viewpoint. An Architecture View consists of one or
more Architecture Models” [126].

Architecture Model An Architecture View “is comprised of Architecture Models. Each model is
constructed in accordance with the conventions established by its Model Kind, typically
defined as part of its governing viewpoint. Models provide a mean for sharing details
between views and for the use of multiple notations within a view” [126].

Model Kind A Model Kind defines “the conventions for one type of Architecture Model” [126].
For instance, UML class diagrams and Petri nets are two Model Kinds.

Appendix C shows the different relationships between the terms and concepts described
above. Reusing this common standard terminology, we can say that our generic framework for
QASWS is composed of a set of Architecture Models (see Section 3.3) that, all together, form
an Architecture Description. Then, we reuse these Architecture Models to propose several
Architecture Views that, all together, form a Reference Architecture (see Section 3.4). Finally,
we also introduce Reference Guidelines (i.e., best practices) to put our framework into practice
and concretely implement a Sensor Web applied to a real use case (see Section 3.5).

3.2.2 Limitations of Existing Frameworks

Returning briefly to the analysis of the state of the art, we now motivate the need for a new
architecture framework for QASWS. In the following, we focus on OGC SWE specifications
and two other frameworks proposed by standard institutes (ITU-T, ISO) because they are
the most accomplished ones. As a result, many efforts have been achieved to describe and
formalize them, generally involving several people with diverse skills and interests (industrials,
researchers, Smart City stakeholders, etc.). However, they also exhibit some limitations that
we highlight in the following.

45

OGC SWE 2.0 [8] These specifications do not form, strictly speaking, an architecture frame-
work. Instead, they rather define an infrastructure proposal for Sensor Webs that mainly
focus on environmental monitoring. Quite applied, this infrastructure proposal is com-
posed of a set of encoding and Web Service specifications (see Appendix A). Furthermore,
these standards are mainly intended to be used “as it is” by developers. However, this
approach may also restrict specification evolutivity, applications and, therefore, their
adoption. Even now, OGC SWE 2.0 standards are often considered as too complex to
be applied to the IoT as they do not explicitly consider virtual sensors, QoO nor dif-
ferent ways to represent and exchange observations. One of the biggest issues with
OGC SWE 2.0 standards concerns the lack of support regarding ontologies, whether
to describe sensor capabilities or annotate observations. This has led to numerous
individual efforts [31, 61, 62, 63] in order to develop Semantic Sensor Webs, which shows
a clear willingness from researchers to have more interoperable and more evolutive
systems.

ITU-T Y.2068 [50] This recommendation proposes a “functional framework and capabilities
of the IoT”. It describes three different views (design phase, implementation phase, de-
ployment phase) that focus on IoT capabilities to meet common requirements identified
in [127]. We acknowledge the different layers, capabilities and requirements considered
by this framework. However, the framework only envisions QoO from a network QoS
perspective, by specifying that “time-critical communications are required to be sup-
ported” as QoS “provides some mechanisms to guarantee the delivery and processing of
time-critical messages”.

IoT ARM [52] The FP7 IoT-A project has delivered an “Architecture Reference Model” (ARM)
for the IoT. To the best of our knowledge, this is the most recent and biggest effort to pro-
pose a generic framework for the IoT. This framework also relies on ISO/IEC/IEEE 42010
standard for the definition of Architecture Models and Architecture Views. It adopts a
Model-Driven Architecture (MDA) approach [53], by trying to remain generic of future
use cases as much as possible (with Platform Independent Models or PIMs). It also
provides guidelines to create more concrete architectures (Platform Specific Models or
PSMs). Despite all these efforts, the final report only discusses QoO from security and
network protocol perspectives (see Section QoO Mechanisms and Transformations in
Chapter 2).

Cisco’s IoT Reference Model [54] Proposed by Cisco, this reference model details 7 concep-
tual levels, from “Physical Devices & Controllers” (level 1) to “Collaboration & Pro-
cesses” (level 7) that, all together, may be representative of main components, stake-
holders, data and processes that can be identified within the IoT. Overall, this reference
model is more a taxonomy of the different IoT planes than an architecture framework.
More precisely, it is presented as a “decisive first step toward standardizing the concept
and terminology surrounding the IoT”. Without being explicitly mentioned, this model
acknowledges the importance of QoO. For instance, it is mentioned that, at level 6,
applications should “give business people the right data, at the right time, so they can do

46

ID Description Rationale Perspective

F1
The system should act as a middleware layer be-
tween sensors and applications.

QASWS are mediators that should fulfill the original
Sensor Web vision.

Integration

F2
The system should be able to integrate heteroge-
neous observation producers.

Many sensors (including virtual ones) with different
capabilities have been developed by several manu-
facturers.

Integration

F3 The system should handle observation streams.

QASWS should be able to operate in modern IoT
environments where virtual sensors (e.g., API) may
produce continuous and unbounded observation
streams (i.e., infinite sequences of observations).

Integration

F4
The system should provide different observation
granularity levels (e.g., Raw Data, Information,
Knowledge) to observation consumers.

QASWS’ consumers may be applications and/or
humans. Therefore, they do not have the same pro-
cessing and understanding capabilities.

Integration

F5
The system should provide ways to express SLAs
with optional QoO constraints.

According to their application domain, consumers
may not have the same QoO expectations.

QoO

F6
The system should provide ways to automatically
discover new resources (sensors and QoO Pipelines)
at runtime.

Extra QASWS configuration should not require any
reboot in order to maintain continuity of service.

System
adaptation

F7
The system should be able to characterize the ser-
vice offered by a QoO Pipeline.

Small snippets of code (custom QoO Pipelines) can
be written by domain-specific human experts such
as meteorologists to adjust the QoO level.

QoO

F8
The system should continuously monitor the QoO
offered to its consumers.

QASWS should be able to quickly react to any con-
text change by implementing an adaptation control
loop.

QoO, System
adaptation

F9
The system should provide feedback to observation
consumers and administrators.

Although they are autonomic, QASWS should keep
humans updated of adaptation decisions.

QoO, System
adaptation

Table 3.1 – Functional requirements considered by our generic framework for QASWS

47

ID Description Rationale Perspective

NF1
The system should be able to adapt itself to meet
the QoO constraints specified in request SLAs.

QASWS should provide resource-based and QoO-
based adaptation. Adaptation may involve SANETs
or common mechanisms (Fusion, Filtering, etc.).

QoO, System
adaptation

NF2
The system should adjust QoO level (if specified,
when possible) in a consumer-specific fashion and
at reasonable cost.

QASWS should not introduce too much overhead
(e.g., delay, QoO) while providing system adapta-
tion feature.

QoO

NF3
The system should be able to process a large num-
ber of observations per unit of time.

QASWS should be able to cope with certain Big Data
challenges (Velocity, Volume).

Scalability
(Integration)

NF4
The system should rely on modular, reusable and
configurable entities to process observations.

QASWS should be able to compose and orchestrate
the different entities to save resources while meet-
ing SLAs.

Scalability
(Integration),
QoO, System
adaptation

NF5
The system should deliver observations following
the Reactive Streams paradigm.

QASWS should deliver observations in an asyn-
chronous way to not be limited by the observation
consumption rate of applications.

Scalability
(Integration)

NF6
The system should be extensible and provide ways
to integrate new external observation sources such
as virtual sensors.

QASWS should be customized according to their
use case or deployment scenario.

Integration

NF7
The system should be extensible and provide ways
to add new QoO Pipelines.

QoO is a notion in constant evolution, which may
require from domain-specific experts to update the
available QoO Pipelines.

QoO

NF8
The system should reuse common sensor-related
technologies and standards to maximize its inter-
operability.

Requiring few modifications, researchers may want
to connect several QASWS together (systems of sys-
tems) or reuse QoO attributes computed by another
QASWS (semantic integration).

Integration

Table 3.2 – Non-functional requirements considered by our generic framework for QASWS

48

the right thing”. It should be noted that this reference model is the only one to clearly en-
vision Edge Computing (also called Fog Computing) for the IoT. Without going into too
much detail, Edge Computing is characterized by some components (generally sensors
or gateways) that are generally able to pre-process Raw Data observations rather than
transmitting all of them directly to IoT platforms. Cisco’s IoT Reference Model mentions
the possibility to apply some QoO mechanisms (such as observation Filtering) for “Data
Accumulation – Storage” (level 4). We further expand on the key role that Mobile Edge
Computing can play regarding QASWS and QoO in Section Transverse Paradigms of
Relevance for QoO in Chapter 6.

3.2.3 General Requirements

In a complementary manner of the existing architecture frameworks (especially ITU-T Y.2068
and IoT ARM), we propose an architecture framework for QASWS. Inspired by the FP7 IoT-A
project that defines an “unified requirements list”, we also based our framework proposal
on a list of high-level requirements. Differently from the IoT-A project, we chose to draw
our requirement list based on the analysis of the features/limitations of the 30 Sensor Web
solutions already described in the state of the art rather than by gathering requirements from
stakeholders. This choice was motivated by the fact that the great majority of existing Sensor
Webs have not been developed with the help of a particular framework. As a consequence,
existing solutions may represent as many ways to implement the Sensor Web paradigm. On
this basis, we strongly believe that popular current trends are likely to have a real impact on
the development of future Sensor Web solutions (e.g., the use of the SSN ontology to annotate
observations). In order to narrow down our requirement search and avoid redundancy with
requirements considered by existing frameworks, we focused on the three research challenges
that we consider as essential to fulfill the QASWS vision (i.e., integration, QoO, system adapta-
tion). As much as possible, we try to remain independent of further use cases, deployment
scenarios and technologies to propose a requirement list suitable for a generic framework.

In the end, we consider 17 general requirements, listed in tables below. Table 3.1 presents
functional requirements (starting with “F”). while Table 3.2 lists non-functional require-
ments (“NF”). For each requirement, we mention its identifier (“ID”) and description. The
“Rationale” column refers to the explanation for a given requirement, while the “Perspective”
column reminds to which research challenge it belongs to.

Based on these requirements, we now present the three components of our framework,
namely the QASWS Model, the QASWS Architecture and the QASWS Reference Guidelines.

3.3 QASWS Reference Model

The QASWS Reference Model is the first component of our generic framework. It is composed
of 4 sub-models: the Functional model, the Adaptation model, the Domain model and finally
the Observation model. It introduces the common terminology and concepts that we will
reuse to describe other components of our framework.

49

3.3.1 Functional Model

We first propose a functional model that summarizes most of the general requirements. This
model aims to conceptually depict interactions between a Sensor Web, its observation pro-
ducers and consumers. Furthermore, it describes the different functional layers identified to
enable QASWS.

Returning to the three observation granularity levels, one could say that Raw Data is
the result of collection and digitization of sensor outputs; that Information is obtained by
characterizing Raw Data with Context, and that Knowledge is achieved through the semantic
annotation of Information and the disposal of a base ontology model. System (3.1) shows a
formalized set of equations that describes the transformations needed to obtain the different
observation levels:

fdigit(Sensor outputs) = Raw Data

fcharac(Raw Data,Context) = Information

fsem(Information,OntoModel) = Knowledge

(3.1)

Following a layer-based decomposition, Figure 3.1 shows the different functional layers of
a QASWS, as well as the service that they provide to other layers. While observation producers
and consumers are depicted as standalone layers, a QASWS is composed of the four following
layers:

Raw Data layer This layer implements the fdigit function and transforms sensor outputs into
Raw Data observations. Raw Data can be directly served to observation consumers or to
the Information layer.

Information layer This layer implements the fcharac function. Its responsibility is to enrich
Raw Data with Context to produce Information. Information can be directly served to
observation consumers or to the Semantic layer.

Semantic layer This layer implements the fsem function. Relying on an ontology model, it
should semantically annotate Information to produce Knowledge. Then, this Knowledge
is served to observation consumers.

Management & Adaptation layer This layer spans the entire functional model from observa-
tion producers to consumers and is dedicated to QoO-based adaptation. It is also in
charge of handling consumer requests and should provide feedback regarding adapta-
tion. As previously mentioned, adaptation may involve the deployment of QoO mecha-
nisms at different observation layers, as well as sending actions to actuators (for SANETs).

50

Observation producers

Semantic layer
fsem(…)

Information layer
fcharac(…)

Raw Data layer
fdigit(…)

Management
& Adaptation

layer

Observation consumers

Figure 3.1 – Layer-based functional model for QASWS

3.3.2 Adaptation Model

The adaptation model aims at detailing the different adaptation strategies of the Management
& Adaptation layer of the functional model. As previously discussed, QASWS may change their
internal behavior to provide adaptation. When end consumers express some QoO constraints,
systems may be asked to specifically process observations according to consumer needs,
leading to the creation of dynamic observation pipelines with distinct quality levels.

The adaptation model defines a “common mechanism” as a reusable piece of computer
code that can be applied to one or more observations, resulting in a transformation of these
observations. Besides, it distinguishes two different kinds of common mechanisms (see
Figure 3.2). On the one hand, it denotes by “layer-specific mechanisms” the ones that are highly
tied to the asked observation level. On the other hand, it denotes by “QoO mechanisms” more
generic mechanisms destined to adjust (when possible) the QoO level for a given consumer
that had expressed SLA (observation request).

QASWS allow domain-specific experts to use some of these building blocks to define new
QoO Pipelines, enabling the system to provide dynamic QoO-based adaptation in a consumer-
specific fashion. This model provides a characterization of the service offered by six popular
QoO mechanisms that are regularly found in the literature (Filtering, Caching, Formatting,
Fusion, Aggregation, Prediction) to domain-specific experts. It should be noted that this list is
not exhaustive but can be reused to help characterized more complex mechanisms. In the
following, service characterization will be performed at functional level, following a black-box

51

Prediction

KnowledgeInformationRaw Data

Legend
Network QoS guarantees

Context annotation

QoI computation

Semantic-based
observation annotation

Semantic-based
sensor description

Aggregation

Fusion

Formatting

Caching

Filtering

Layer-specific
mechanisms

QoO
mechanisms

Common
mechanisms

Figure 3.2 – Common mechanisms for QASWS may be divided into layer-specific and QoO
mechanisms

Filtering
Observation

stream RD, I, K

q  Threshold(s)

Time interval

Observations

Best applied on

Parameter(s) required
by the mechanism

t0 t1 t2 t0 t1 t2

Figure 3.3 – “Black-box” service characterization for a QoO mechanism

approach. For each mechanism, the adaptation model will describe its inputs, outputs and
required parameters as well as the observation levels on which it should be best applied on.
An example of service characterization with its legend can be found in Figure 3.3. Please note
that the time intervals on the right side of the mechanism correspond to the processing of
observations that arrived during the time intervals on the left side of the mechanism.

Filtering mechanism aims to ensure that all forwarded observations meet a certain criteria.
Generally, this criteria consists in evaluating the observation value against some threshold(s).
The test is independently applied on each observation that arrives. If the condition is true (i.e.,
compliant with the given thresholds), the mechanism let the observation goes through. Other-
wise, the observation is dropped. A service characterization for the Filtering mechanism is
depicted in Figure 3.4a.

52

Caching mechanism is intended to cope with a lack of observations. In this case, the mech-
anism should keep in memory some observations that meet a certain criteria. Generally,
caching is used to retain the last received observation for a certain amount of time (retention
period). When a new observation should be emitted, the mechanism may continue to repeat
the cached value, depending on the enforced policy. A service characterization for the Caching
mechanism is depicted in Figure 3.4b.

Formatting mechanism refers to the process of adapting the presentation of the observa-
tions (format) according to predefined rules. For instance a formatting mechanism may
perform temperature conversion into Fahrenheit or Celsius degrees. This mechanism requires
some conversion rules and/or field mapping template(s) in order to correctly process incom-
ing observations of a certain type. A service characterization for the Formatting mechanism is
depicted in Figure 3.4c.

Fusion mechanism consists in outputting an observation that “summarizes” several ones
thanks to a fusion operator. For instance, a sliding mean (i.e., outputting the average of
observation values over a period of time) is a concrete fusion operator. This mechanism is
particularly useful to reduce stochastic errors of observations [111, 128], reducing the observa-
tion uncertainty. It should be noted that one of the greatest challenges is to fuse observations
without any losses. Nevertheless, some use cases (such as environmental monitoring for
instance) may be less sensitive to these losses as observation consumers often only care about
orders of magnitude. A service characterization for the Fusion mechanism is depicted in
Figure 3.4d.

Aggregation mechanism is used to emit batches of several observations at once. The aggre-
gation can be performed based on a certain number of observations (count-based), a certain
amount of time (time-based) or a combination of the two. In the latter case, observations are
emitted as soon as one of the two conditions is true (count or time). A service characterization
for the Aggregation mechanism is depicted in Figure 3.4e.

Prediction mechanism Machine Learning may be used to perform more complex reasoning
and transformations on observations as it gives “the ability to learn without being explicitly
programmed”1. Machine Learning algorithms are generally used to classify observations,
detect errors (outliers) or even to predict some missing observations. With regard to observa-
tion prediction, a train dataset is often used as historical data to learn from. Thus, this QoO
mechanism must be cautiously used as it may be not applicable to all use cases (subject to
observation predictability) and may even degrade QoO level if the train dataset is not rep-
resentative enough of the range of possible observation values (underfitting or overfitting
well-known issues). An example of service characterization corresponding to the Prediction
mechanism is depicted in Figure 3.4f.

1Source: https://en.wikipedia.org/wiki/Machine_learning

53

https://en.wikipedia.org/wiki/Machine_learning

Aggregation

RD, I, K

!  Time interval
!  Observation count

Prediction

RD, I, K

!  Classification model
!  Regression model
!  Clustering model
!  Train dataset

(e) (f)

Formatting

RD, I, K

!  Conversion rules
!  Field mapping template(s)

Fusion

RD, I, K

!  Fusion operator

(c) (d)

Filtering

RD, I, K

!  Threshold(s)

Caching

RD, I, K

!  Retention period
!  Policy when no observation

(a) (b)

Figure 3.4 – Service characterization for 6 popular QoO mechanisms. Color (black, blue) refers
to the observation value; shape (triangle, diamond, circle) refers to observation format/kind.

3.3.3 Domain Model

The domain model (see Figure 3.5) describes the key concepts of a QASWS. Some of them are
physical entities (such as Physical sensor and Actuator for instance) while others are abstract
concepts, also called abstractions (such as Service or QoO-based adaptation for instance).
We use UML to express the different relationships (dependence, specialization, aggregation,
composition, etc.) between the entities of our domain model. More information on UML

54

QoO-based
adaptation

Network-related
QoS

Quality of
Observation (QoO)

Quality of
Service (QoS)

QoO
mechanism

QoO
Pipeline

Service

Capabilities Sensor WebAPI

Actuator

Device

Physical
Entity

Logical
sensor

Virtual
sensor

Physical
sensor

Observation
producer

SLA

Human beingApplication

Observation
consumer

1..*

has 0..*

is deployed for
0..*

may enhance

0..*0..*0..*

monitors
0..*

has

1..*

enforces
0..*

0..*

 defines
0..*

is expected to meet
1 1

is submitted to

1

consumes/
subscribes to

0..*

provides
0..*

discovers
0..*

has
0..*

accesses
0..*

has
0..*

monitors

0..*

0..*

acts
on

0..*

0..* 0..*

0..*

expresses

0..*

uses
0..*

Figure 3.5 – Domain model for QASWS

purpose and conventions can be found in [129].

Observation producer concept regroups the three different kinds of sensors and actua-
tors (physical, virtual, logical). We consider that Physical sensors and Actuators are two kinds
of Devices that are linked to a Physical Entity. All sensors can have Capabilities (e.g., sensing
rate) and expose APIs to interact with them.

Observation consumer concept regroups both Applications and Human beings that can use
them. Consequently, a human that is using an application is considered as the main consumer
to satisfy. According to their interests, consumers express observation requests to a Sensor
Web in the form of SLAs. Once he/she/it submits a request, an Observation consumer can start
receiving observations from the Sensor Web. This observation delivery Service is linked to the
previously expressed SLA.

Sensor Web concept implements the Sensor Web vision by making the link between Ob-
servation producers and Observation consumers. As specified by the general requirements, a
Sensor Web should monitors the QoS of each Service that it provides to its consumers. To be
noted that the domain model defines QoS as a composition of network-related QoS and QoO
attributes. When QoS does not meet a SLA, the Sensor Web should try to perform a QoO-based

55

adaptation to heal in a specific manner the given Service. In the case of SANETs, the Sensor
Web may also directly send commands to Actuators through their APIs.

QoO mechanism concept refers to a transformation function that is directly applied on an
observation stream with a willingness to adjust QoO. A QoO mechanism can be compared
to a mathematical function that output a result from input variable(s). Previously, in the
adaptation model, we provided service characterization for some QoO mechanisms such as
Caching, Fusion, Formatting, Filtering, Aggregation and Prediction. To preserve observation
order, a QoO mechanism should process observations in a First In First Out (FIFO) manner.
It may also use sliding windows and non-blocking operators. For the sake of simplicity, we
consider that a QoO mechanism only takes one observation stream in input and has exactly one
output (the processed input observation stream). This framework envisions QoO mechanisms
as simple and modular software components, which can be chained to form QoO Pipelines (see
Figure 3.6).

QoO Pipeline

in
QoO

mech.
#2

out
QoO

mech.
#n-1

QoO
mech.

#3

Figure 3.6 – Relationships between QoO mechanisms and QoO Pipelines: QoO mechanisms
are simple and reusable building blocks that can be chained to process observations in a
sequential FIFO manner to form a QoO Pipeline. “mech.” = mechanism.

QoO Pipeline denotes the composition of one or several QoO mechanisms. As a result, a QoO
Pipeline can be assimilated to a function composition. If g and f are two QoO mechanisms
successively applied on an observation stream x, then a QoO Pipeline h can be defined as:

h(x) = f (g (x)) = f ◦ g (x) (3.2)

A QoO Pipeline may have several inputs (observations, context, sensor states, etc.) but has
imperatively only one output. Moreover, it must preserve observation order for each input
source.

QoO-based adaptation refers to the process of deploying one (or more if the Sensor Web
provide pipeline composition) QoO Pipeline in order to adjust the QoO level corresponding to
a specific Service (i.e., an observation request). Potentially, a Sensor Web may also create new
QoO Pipelines from existing ones by composition. Pipeline composition is particularly useful
to create new associations and new behaviors, resulting in more QoO Pipelines available for
observation processing.

56

3.3.4 Observation Model

The observation domain defines the structure of observations that can be handled and pro-
cessed in a QASWS. Please note that this model does not aim to describe final observation
representation format (e.g., binary, XML2, JSON3, etc.), which is a decision that should be
taken later at implementation phase. Instead, it rather focuses on the actual composition of
an observation record.

Observation granularity levels Inspired by the DIKW ladder formalized by Sheth [59], this
framework also distinguishes several observation granularity levels. In order to be applicable
to a maximum of Sensor Webs, we only consider the first three observation levels (namely
Raw Data, Information and Knowledge). As a result, we assume that Knowledge and Wisdom
are a single observation level for two main reasons. First, we noticed that most of sensor
middlewares do not generate added value services, which can be somewhat considered as
Wisdom in the DIKW ladder. Second, we believe that ontology reasoning (e.g., inference) may
give the ability to Sensor Webs of generating a certain kind of Wisdom directly from Knowledge.
Thus, by focusing on the three first levels as a common denominator, our generic framework
targets all kinds of Sensor Webs without being specific of a particular application domain.

It should be noted that, within the DIKW terminology, Wisdom is only another term for
actionable Knowledge. As such, it is generally generated by users themselves (e.g., domain-
specific experts such as meteorologists, clinicians, etc.) rather than by Sensor Webs. To
automate this Wisdom-generation process, several attempts have been made to go towards
Cognitive Computing and develop smarter machines with a “coherent, unified, universal
mechanism inspired by the mind’s capabilities” [130]. On this matter, this framework takes
advantage of the Autonomic Computing paradigm to provide system adaptation and enable a
certain type of Cognitive Computing [131]. Although interesting, more advanced approaches
to facilitate Cognitive Computing are far beyond the scope of this thesis as they often relate
to specific areas of expertise and rely on transverse disciplines such as neuroscience and
psychology.

Raw Data (level 1) The first observation level corresponds to unprocessed Raw Data directly
coming from sensors. Generally, they are encoded in the key/value form and do not
contain any additional information (see an example of in Table 3.3). Raw Data may
contain some contextual details (e.g., the provenance in the example above) but does
not require the Sensor Web to retrieve additional Context, contrary to the two other
observation levels.

Information (level 2) The second observation level corresponds to sensor Information. In-
formation is sensor Raw Data that has been processed or enriched with Context (see an
example of in Table 3.3). To get this kind of observations, Sensor Webs may retrieve ad-
ditional Context regarding sensors in different ways (via an external database, a context
distribution middleware, a sensor API, etc.). Within Information, Context is required in

2eXtensible Markup Language
3JavaScript Object Notation

57

order to associate a physical location to the sensor that produces the measurement. The
main distinction between Raw Data and Information is related to the computation and
the annotation of quality attributes/metrics to the original observations. In contrast to
Raw Data, Information can be seen as observations that have been processed by Sensor
Webs.

Knowledge (level 3) The third observation level is reached with the use of semantics. By im-
plementing a semantic annotation approach, Sensor Webs can model domain-specific
observations and thus deal with machine-understandable information. We denote by
sensor Knowledge any semantic-based observation representation (see an example of
in Table 3.3). In order to produce Knowledge, a Sensor Web also requires Context. It
also requires a base ontology model to formalize and annotate the different observa-
tion fields such as: the geographic location of the measure; its quantity and unit; the
confidence that one can have in this specific sensor. As a consequence, Knowledge is
often produced based on observations coming from level 2 (Information), which already
include many contextual attributes.

Obs. level Example of observation record

Raw Data
{sensor_id: 34, value: 20, unit: Celsius, producer:
sensor_1}

Information
{sensor_id: 34, value: 20, unit: Celsius, producer:
sensor_1, location: (43.564509,1.468910), accuracy: 0.8}

Knowledge
{At home, temperature is within comfort range. This observation can be
trusted since it has a good accuracy.}

Table 3.3 – Examples of Raw Data, Information and Knowledge observations

Figure 3.7 conceptually represents the relationships that exist between the three different
observation granularity levels. In particular, it depicts that Information can be constructed
from Raw Data, and then be used to construct higher-level Knowledge (inheritance rela-
tionship). Besides, this framework considers that Information should contain additional
Context (association).

Quality of Observation One other purpose of the observation model is to explain the differ-
ent relationships between the quality dimensions introduced so far. Network QoS impacts
all others quality dimensions as it affects the transportation of observations from sensors to
Sensor Webs, and then from Sensor Webs to final consumers. Whether for virtual or physical
sensors, these collection and distribution phases introduce additional delay and may affect
the intrinsic DQ. Depending on the medium characteristics and the transport protocols used,
observations may be prone to other issues such as packet losses. Since Information (level 2)

58

Figure 3.7 – Observation granularity levels considered by QASWS

and Knowledge (level 3) are produced from Raw Data (level 1), DQ may impact both QoI
and QoK. Besides, QoI largely depends on the quality of the available Context (which may be
retrieved or inferred). As a result, QoC also impacts QoI attributes. Finally, since Knowledge
is often derived from Information through semantic annotation processes, QoI may have
an impact on QoK. Figure 3.8 makes the link between the observation granularity levels and
the different quality dimensions. Compliant with the domain model, the observation model
considers the QoS as a combination of both network QoS and QoO-related attributes. As a
result, network QoS and DQ should preferably be considered at Raw Data level, QoI and QoC
at Information level and QoK at Knowledge level.

Our generic framework defines “Quality of Observation” (QoO) as a generic concept that
encompasses quality dimensions other than network QoS (i.e., DQ, QoI, QoC and QoK). This
allows us to make a clear distinction between Context and QoO attributes: while a Context
attribute is a component of an Information, a QoO attribute is any metric used to better
characterize the actual value of an observation (enriched or not with Context attributes).

Quality of
Information

QoC

Data Quality

Quality of Knowledge

network QoS

Quality of
Service

Quality of
Observation

Raw Data

Information

Knowledge

Observation
granularity levels Quality dimensions

Figure 3.8 – Observation granularity levels and quality dimensions considered by QASWS

59

Linking Observation and Domain Models The observation model specifies the domain
model by describing the nature and structure of observations that QASWS may handle and
process. Returning to the domain model, a Service consists in the distribution of observa-
tions (Raw Data, Information, Knowledge) of a certain QoO to a given observation consumer.
However, we found that this simple fact could not easily be inferred from domain and observa-
tion models. Thus, there was a need to link both models together from an observation-centered
perspective.

To achieve this, we used ontology-based modeling. Reusing the existing, we developed
the QoOnto ontology by importing two popular ontologies (W3C SSN [33] and IoT-Lite [132]).
These two ontologies were specifically chosen for the number of domain concepts that they
cover. Figure 3.9 shows the concepts modeled by the different ontologies while Table 3.4 lists
the most important semantic alignments between the domain model concepts and ontology
classes. The attentive reader will note that some concepts (observation consumers, SLA, QoS,
Actuator, etc.) are not modeled by the final QoOnto ontology. Our objective here is not to
model every concept but rather to provide “linkage points” to bridge the gap between domain
and observation models. Some of these missing concepts will be clarified later. For instance,
some SLA examples are given in the Observation View (Section 3.4.2).

QoO-based
adaptation

Network-related
QoS

Quality of
Observation (QoO)

Quality of
Service (QoS)

QoO
mechanism

QoO
Pipeline

Service

Capabilities Sensor WebAPI

Actuator

Device

Physical
Entity

Logical
sensor

Virtual
sensor

Physical
sensor

Observation
producer

SLA

Human beingApplication

Observation
consumer

1..*

has 0..*

is deployed for
0..*

may enhance

0..*0..*0..*

monitors
0..*

has

1..*

enforces
0..*

0..*

 defines
0..*

is expected to meet
1 1

is submitted to

1

consumes/
subscribes to

0..*

provides
0..*

discovers
0..*

has
0..*

accesses
0..*

has
0..*

monitors

0..*

0..*

acts
on

0..*

0..* 0..*

0..*

expresses

0..*

uses
0..*

SSN
ontology

QoOnto
ontology

IoT-lite
ontology

Figure 3.9 – Ontologies used to model key concepts of QASWS

60

Domain Model concepts Ontology classes

Observation producer ssn:Sensor
Capabilities ssn:MeasurementCapability

Service iot-lite:Service
QoO qoo:QualityOfObservation

QoO Pipeline qoo:QoOPipeline

Table 3.4 – Semantic alignments between domain model concepts and ontology classes for
QASWS

The QoOnto ontology The QoOnto ontology (see Figure 3.10) makes the link between Obser-
vation producers, Services, the observations and their QoO. It reuses the existing (by importing
concepts from the W3C SSN and IoT-Lite ontologies) to not reinvent the wheel, which is com-
pliant with Linked Data4 best practices. As shown in Figure 3.10, an ObservationValue may
have a QoOIntrinsicValue, which is related to a QoOAttribute and consists in a QoOValue. For
instance, a visibility record that indicates 10 kilometers may have an accuracy of 80% and
a timeliness of 2 seconds. In this example, accuracy and timeliness are two QoOAttributes
while 80% and 2 seconds are their two associated QoOValue. Combined, this gives two pairs of
QoOIntrinsicValue that, all together, provide meaningful information regarding the QualityOf-
Observation of the visibility value. When it comes to QASWS, we envision that domain-specific
experts may use their knowledge in order to develop new QoOPipelines. A QoOPipeline may
have a general QoOEffect (positive, negative or neutral impact) onto one or several QoO-
Attributes. Sometimes, a QoOPipeline exposes one or several QoOCustomizableParameters,
which can be set to meet the desired QoO level. Returning to the previous visibility example, a
meteorologist may develop a “filtering pipeline” that only lets pass observation values above a
certain threshold. Since visibility can only be a positive distance measurement, setting the
threshold parameter to 0 may represent one way to deal with sensor-related errors, improving
the accuracy of the received observations.

It should be pointed out that, in order to develop the QoOnto ontology, we relied on the
2012 edition of the SSN ontology (SSN-XG) developed by the W3C [33]. As already mentioned
in the state of the art, one of the main criticisms about this release concerned the alignment
with some OGC concepts (in particular regarding the Observation concept). To address that
issue, we plan to develop a second release of our ontology as soon as the new SSN version5

will officially be released (still in draft stage at the time of writing this manuscript). We
estimate that this update will not require much development efforts as the W3C provides
an SSNX Alignment Module and uses different namespaces for backward-compatibility and
transition purposes. Besides, the new SSN version is, first and foremost, a simplification of the
SSN-XG ontology, which was perceived as “too heavyweight (on its axiomatization) and too
dependent on OWL reasoning by some users”6. As a result, we expect the second release of our
QoOnto ontology to be simpler and more modular. Overall, recent announcements from the

4http://linkeddata.org
5http://w3c.github.io/sdw/ssn
6Source: http://w3c.github.io/sdw/ssn/#Developments

61

http://linkeddata.org
http://w3c.github.io/sdw/ssn
http://w3c.github.io/sdw/ssn/#Developments

qoo:isAbout
...

m3-lite:Temperature

...

m3-lite:DegreeCelsius

qu:QuantityKind

qu:Unit

qoo:QoOIntrinsicValueqoo:QoOValue
- qooStrValue : String

qoo:QualityOfObservation qoo:QoOPipeline

qoo:QoOCustomizableParameter
- qoo:documentation : String
- qoo:paramType : String
- qoo:paramMinValue : String
- qoo:paramMaxValue : String
- qoo:paramInitialValue : String

qoo:QoOAttribute
- qoo:shouldBe : Variation

...

ssn:FeatureOfInterest

ssn:ObservationValue
- qoo:obsDateValue : String
- qoo:obsTimestampsValue : String
- qoo:obsLevelValue : ObservationLevel
- qoo:obsStrValue : String

ssn:SensorOutput

ssn:Property

qoo:QoOEffect
- qoo:paramVariation : String
- qoo:qooAttributeVariation : String

ssn:MeasurementRange

ssn:MeasurementCapability

ssn:MeasurementProperty
- qoo:hasExactValue : String
- qoo:hasMinValue : String
- qoo:hasMaxValue : String

ssn:Observation

iot-lite:Coverage

iot-lite:Service
iot-lite:interfaceType : String
iot-lite:endpoint : String
iot-lite:interfaceDescription : String

ssn:Platform

ssn:System

ssn:Device

geo:Point
- geo:lat : String
- geo:long : String
- geo:alt : String
- iot-lite:altRelative : String
- iot-lite:relativeLocation : String

ssn:SensingDevice ssn:Sensor
- qoo:sensor_id : String
- qoo:sensorStateValue : String

iot-lite:hasUnit
1

qoo:hasQuantityKind

1

iot-lite:has
QuantityKind

1

qoo:
canBeRetrieved

Through

0..*

qoo:hasUnit

1

qoo:hasQoOValue
1

1

qoo:hasQoO
0..*

qoo:increases
qoo:decreases
qoo:neutralFor

0..*

qoo:allowsToSet
0..*

qoo:has

0..*
qoo:impacts
0..*

ssn:featureOfInterest

0..*

ssn:hasValue
0..*

ssn:observationResult
0..*

ssn:observedProperty
0..*

ssn:madeObservation
0..*

qoo:has
0..*

ssn:has
Measurement

Capability

0..*

ssn:has
Measurement
Property

0..*

geo:location
0..1

iot-lite:hasCoverage
0..1

qoo:offers
0..*

iot- l i te:
exposedBy

0..*

ssn:attachedSystem
0..*

qoo:isInTheAreaOf
0..*

geo:location
1

Figure 3.10 – Overview of the QoOnto ontology. Concepts and relationships with the prefix “qoo” have been created. Colors are
arbitrary and only serve to distinguish the different imports/namespaces.

62

W3C show an impressive long-term support (more than five years and ongoing) for the SSN
ontology. On this basis, we are confident that we have made the right choice by considering
the SSN ontology as the standard that we needed. Given all this, one can foresee that the SSN
ontology (both old and new releases) will remain popular for many years to annotate sensors
and their observations, including for complex use cases such as the ones that can be found
within the IoT.

3.4 QASWS Reference Architecture

The Reference Architecture is the second component of our generic framework. Instead of
proposing a generic architecture that could be redundant with previous models, we rather
choose to describe 4 architecture views. As mentioned in the definitions, the purpose of an
architecture view is to address some concerns from a given stakeholder perspective.

Our framework adopts a developer perspective and details how the different research
challenges should be addressed with regards to the different concepts already introduced.
While the Functional view focuses on integration-related concerns, the Observation view refers
to QoO and the Adaptation view specifies system adaptation. Finally, the Deployment view
provides a summary of all concerns and models, linking entities with observations, business
services and stakeholders.

3.4.1 Functional View

The functional view reuses the functional model and addresses integration-related concerns.
Therefore, we consider sensors as main observation producers and applications as main
observation consumers. This is compliant with our previously accepted Sensor Web definition.
In the following, we highlight other differences that should be noticed compared to the
functional model presented in Figure 3.1.

First, the common mechanisms have been positioned on layer(s) where they should
normally be enforced. Thus, each layer-specific mechanism belongs to a particular observation
layer (either Raw Data, Information or Knowledge). We also add the two required inputs for
the Information and Semantic layers, namely Context and Ontology base model, respectively.
Since QoO mechanisms have been introduced in a generic way, the functional view considers
them as cross-layering mechanisms that can be applied at any observation layer.

Then, the different components of the Management & Adaptation layer have been speci-
fied. The Adaptation API handles incoming SLAs from applications while allowing them to
retrieve feedback. Once received, SLAs should be “routed” to the appropriate Autonomic
Manager(s) (AM) so that an observation pipeline can be deployed from sensors to the given
application. When a SLA is not or no longer fulfilled, AM(s) should search for a possible QoO
Pipeline (or several QoO Pipelines if composition is enabled/applicable) that could heal the
associated observation request (adaptation control loop). This guarantees application-specific
adaptation based on the current QoO delivered. Please note that the functional view considers
three AMs only to better introduce the observation view. However, it would also be possible to
have a single AM to manage the three different observation levels.

63

Sensor layer

Semantic layer

Information layer

Raw Data layer

Raw Data

Information

Knowledge

Application layer

Caching,	Fusion,	Formatting,	
Aggregation,	Filtering,	

Prediction	
Observation	
annotation	

Context	
annotation	 QoI	computation	

Network	QoS	
guarantees	

Sensor	
description	

Context

Sensor outputs

Ontology
base model AM

#3

AM
#2

AM
#1

Adaptation
API

(*) SANETs only

SLAs

Feedback

Figure 3.11 – Functional view for QASWS. “AM” = Autonomic Manager.

3.4.2 Observation View

The observation view reuses the domain, observation and functional models. It describes the
different data exchanges (SLAs and observations) within QASWS. In particular, we detail the
different steps corresponding to the enforcement of a new SLA. We distinguish 10 different
steps from SLA submission to feedback. For convenience, we indicate them with numbers on
the functional view (see Figure 3.12).

1© Through its application, a user expresses a SLA regarding the current visibility in a
specific location (see also Table 3.5).

2© The SLA is received by the Adaptation API, which checks if its basic requirements can be
satisfied or not. If yes, the component forwards the SLA to the AM #3 and indicates to
the application the endpoint where observations will be available for consumption.

3© The AM #3 translates the SLA in a comprehensive form for the Information layer and
forwards it. If the SLA mentions the need for observations at Knowledge level, the
Semantic layer subscribes to the Information layer for the given request.

4© The AM #2 translates the SLA in a comprehensive form for Raw Data layer and forwards
it. If the SLA mentions the need for observations at Information level, the Information
layer subscribes to the Raw Data layer for the given request.

64

Sensor layer

Semantic layer

Information layer

Raw Data layer

Application layer

AM
#3

AM
#2

AM
#1

Adaptation
API

1 2

3

4

5

6

10

7 7

8

9

8

Figure 3.12 – Observation view for QASWS

5© The AM #1 enforces the final SLA. It forwards it to the Raw Data layer, which subscribes
to the different sensors specified in turn. At this stage, the observation graph has been
deployed from sensor(s) to the application.

6© Because of the subscription, sensor outputs are now received by the Raw Data layer.
This layer may perform different transformations (see layer-specific mechanisms) on
them in order to transform sensor outputs into Raw Data observations. Then, each
observation is made available for consumption by the upper layers.

7© If the SLA mentioned a need for “Raw Data observations”, the application can directly
consume them from the Raw Data layer (e.g., appli_RD in Figure 3.13). Otherwise,
the Information layer consumes observations and transforms them into Information
observations. Then, each observation is made available for consumption by the upper
layers.

8© If the SLA mentioned a need for “Information observations”, the application can directly
consume them from the Information layer (e.g., appli_I in Figure 3.13). Otherwise, the
Semantic layer consumes observations and transforms them into Knowledge observa-
tions. These observations are now available for consumption by the application.

9© At this stage, the SLA mentioned a need for “Knowledge observations” and the applica-
tion can retrieve them by subscribing to the Semantic layer (e.g., appli_K in Figure 3.13).

10© The application may also retrieve feedback from the QASWS regarding SLA status, cur-
rent QoO, adaptation, etc.

65

“Raw Data” Pipeline

in … out

“Information” Pipeline

in … out

“Knoweledge” Pipeline

in … out

appli_RD appli_I appli_K

6

7

8

9

Figure 3.13 – By chaining pipelines, QASWS can provide different observation granularity
levels to applications

The different operations of observation production and consumption (steps 6© to 9© in
Figures 3.12 and 3.13) should be done according to the Publish/Subscribe design pattern [65],
which enables loose coupling between publishers and subscribers. In this way, the different lay-
ers do not even need to be aware of potential consumers and can produce observations at their
own pace. Similarly, consumers may retrieve and process observations without interfering
with the observation production.

Table 3.5 gives several formulations of a same SLA at different steps (i.e., perception
levels) of the observation view. It should be noted that a same SLA becomes more and more
precise from AM #3 to AM #1. At step 3©, the AM #3 processes the SLA by using ontology
inference and reasoning. For instance, this may allow it to identify the “region of Toulouse”
concept as a geographical area centered on a point of coordinates (43.600084, 1.437066). At
step 4©, the AM #2 processes the SLA by using sensor Context. This may allow it to make an
equivalence between a geographical area and a list of sensors. Finally, at step 5©, the AM #1
has no translation to make and can directly subscribe to the specified sensors (by filtering

Perception
level

SLA formulation

User (step 1©) Subscribe to the current visibility for the city of Toulouse.

AM #3 (step 3©)
Subscribe to observation values that correspond to visibility measurements
and that have been output by sensors in the region of Toulouse.

AM #2 (step 4©)
Subscribe to observation values that correspond to visibility measurements
and that have been output by sensors that are in a 2 km distance radius of a
point of coordinates (43.600084, 1.437066).

AM #1 (step 5©) Subscribe to observation values that are emitted by sensor_23, sensor_4, . . .

Table 3.5 – Example of a SLA translation at different levels of the observation view

66

received observations based on their provenance for instance).

3.4.3 Adaptation View

The adaptation view describes the different adaptation strategies of a QASWS (auto-(re)config-
uration, structural reconfiguration and behavioral reconfiguration). It uses the domain and
adaptation models, relying on QoO mechanism and observation pipelines. Since adaptation
is always performed for a given request on certain conditions, we base the description of the
adaptation view on a concrete scenario.

“Raw Data” Pipeline

in … out

appli_RD

6 7

“Remedy 1” QoO Pipeline

in
Filtering
τ < 0 °C out

“Raw Data” Pipeline

in … out

appli_RD

6

7

“Remedy 1” QoO Pipeline

in
Filtering

τ < -50 °C out

“Raw Data” Pipeline

in … out

appli_RD

6

7

(a)

(b)

(c)

Figure 3.14 – Adaptation view for one observation request: (a) Nominal state; (b) Structural
reconfiguration; (c) Behavioral reconfiguration. Steps 6© and 7© refer to the same steps than
in Figure 3.12.

67

Let us take a consumer (called appli_RD) that submits a SLA requesting temperature
observations for a given location at Raw Data level with QoO constraints. According to the
previous observation view, the QASWS should perform steps from 1 to 7. Figure 3.14a shows
the nominal state for this request, with a Raw Data Pipeline that process observations coming
from sensors and delivers them to the application. After a while, let us imagine that the current
QoO for the delivered observations is not compliant with the QoO constraints expressed in the
SLA. In this case, the QASWS will search for one (or a composition of several if composition is
applicable) QoO Pipeline(s) likely to adjust QoO to the asked level specified within the request.
The deployment of QoO Pipeline(s) allows the system to process observations in a consumer-
specific way, leading to QoO-based adaptation. Figure 3.14b shows an example of structural
reconfiguration where the QASWS has deployed a QoO Pipeline that contains a Filtering
mechanism. After such structural reconfiguration, the QASWS should monitor the effect of the
deployed QoO Pipeline(s) in order to guarantee that the system is in a steady state. In the case
where the QoO level still does not comply with the expressed SLA on a longer term, the QASWS
may perform behavioral reconfiguration. Compared to structural reconfiguration, behavioral
reconfiguration is assumed to be less costly as it consists in changing the configuration of
an already-deployed pipeline. For instance, Figure 3.14c shows an example of behavioral
reconfiguration where the QASWS has changed the threshold of the Filtering mechanism in
order to filter all temperature values below −50 degree Celsius.

3.4.4 Deployment View

The deployment view synthesizes most of the concepts introduced in previous architecture
views. It reuses the four models introduced so far (domain, observation, functional, adap-
tation). Differently from other views, this view introduces a business distinction for some
services and processes, which makes the link between the technology and the use made of it by
the different stakeholders. Figure 3.15 shows the deployment view for QASWS. Differently from
previous layer-based models and views, this view depicts the Sensor Web vision by arranging
concepts and services by logical groups. However, we name the different groups after the
different functional layers (Sensor layer, QoO-Aware Sensor Web layer, Application layer) to
remain coherent. In the following, we describe the notable insights provided by this view.

Sensor layer regroups all sensors that have been integrated to a QASWS. As mentioned
before, this may include physical, logical and virtual sensors. Sensors that provide APIs
generally allow other systems to interact with them. In that, they also can be considered as
actuators. On the contrary, virtual sensors must provide APIs in order to –at least– retrieve
observations from them. For each enforced request, the first mechanism (e.g., Mechanism_1 in
Figure 3.15) of the pipeline should subscribe to observations coming from sensors. Please note
that this linking is rarely performed directly and often relies on Publish/Subscribe systems
such as sensor middlewares or Message Brokers.

QASWS layer achieves the Sensor Web vision as we consider it in this thesis. The API Gateway
Service allows users and applications to submit new observation requests. The three Auto-

68

nomic Managers of the observation view have been abstracted in a single business process
called the MAPE-K loop. This business process realizes system adaptation, either by enforcing
new requests with available resources (Self-(re)configuration) or by deploying QoO Pipelines
to adjust the QoO level when needed (QoO-based adaptation). In both cases, adaptation
process is realized with the help of the Pipeline deployment service. This service is invoked
every time that observation pipelines (composed of several mechanisms) should be deployed.
Some pipelines may also send QoO reports to the QoO reporting service, in order to allow
further feedback to consumers (such as QoO visualization for instance). Domain-specific
experts may define new QoO Pipelines and register new sensors. Finally, the Knowledge base
is populated by two discovery services (for both sensors and pipelines) to ensure that a QASWS
has always the most updated vision of its available resources. This also implies to characterize
the service offered by the different QoO Pipelines, which is the responsibility of the QoO
Pipeline characterization service.

Application layer regroups applications and their core feature business services. We define
an application core feature as the main usage that is made of an application. For instance, an
application may have “weather forecast” as core feature. However, in order to provide this
business service to users, it may use observations coming from a QASWS. In the deployment
view, we mention this dependency relationship with the fact that applications use added-value
products to realize their main business feature(s). From an application viewpoint, an added-
value product consists in the retrieval of observations that fit its needs. As a consequence,
QASWS should provide application-specific adaptation (or even request-specific adaptation
when needed) based on the expressed SLA(s).

69

Figure 3.15 – Deployment view for QASWS. Yellow elements are business-related; blue elements are software-based; green elements
correspond to physical entities.

70

3.5 QASWS Reference Guidelines

Reference Guidelines are the last component of our generic framework. Applied to some use
cases, these guidelines aim at facilitating the derivation of concrete implementations from our
reference models and architecture views.

These guidelines mainly come from the surveyed Sensor Web solutions (see Section Survey
of Existing Work in Chapter 2). Later, we have enriched them based on our personal experi-
ence that we went through during the development of a custom solution from scratch (see
Chapter 4). Since these best practices come from empiric experience, they should be treated
as such. In particular, we advise the reader that this list may not be exhaustive and that some
points may not be applicable to all Sensor Web systems. In fact, these guidelines intend to
illustrate and facilitate the use of our generic framework by providing recommendations or
answers to common questions that a developer could have when starting to use IoT-related
frameworks.

3.5.1 General Technological Choices

� Programming language. Above all, researchers should choose a language they are
comfortable with. However, they should not forget that the main programming language
chosen for the implementation of their solution will have an impact on its adoption,
especially if it is about an open source project where potential contributors can join the
development process along the way. Moreover, by choosing a widely adopted language,
developers may also take advantage of its community support and knowledge. They
should not hesitate to compare the specifics of many languages for the key features (e.g.,
multithreading, back pressure mechanism, etc.) they want their solution to have: this
may help them to make a quick and better choice.

� Software development process. A rigorous software development methodology (such as
Agile-based methodologies for instance) is essential, especially when it comes to team
projects. It helps to iterate over the different steps of the creation of a new software (re-
quirements, design, implementation, testing, integration, etc.) by limiting risks and
clarifying which deliverables are required to move on from one step to another. It exists
number of techniques so researchers should choose the one that best suits their needs
and/or those of their development team.

� Sensor Web interaction. Nowadays, almost all software systems expose some kind of API.
If researchers want their solution to be (re)used or integrated in a much wider ecosystem,
they should provide at least some basic endpoints to interact with their Sensor Web. In
that case, they should not forget that an API does not necessarily need to be RESTful.
Finally, it may be sometimes appealing to have a nice GUI. A simple question to ask in
order to decide could be: “Would a GUI help to interact with my Sensor Web?”.

71

3.5.2 Architectural Choices

� Modular architecture with integration and extensibility requirements. If possible, re-
searchers should adopt a modular architecture, which allows to break the solution logic
across many components that have precise roles (separation of concerns). Such archi-
tecture also enables component reuse and reduces coupling between components and
interface definitions. For example, for a Java project, the use of OSGi7 or Maven8 are a
good starting point to insure modularity.

� On the use of software Design Patterns. A software Design Pattern is a high-level reusable
template to a commonly occurring issue during software design. As these formalized
best practices have proven to efficiently work, they should be used and reused in order
not to reinvent the wheel and maximize the extensibility and reusability of a Sensor
Web solution. Many examples of design patterns as well as example codes for main
programming languages can be found online9.

3.5.3 Observation Formatting and QoO Characterization

� Standards for observation formatting. Even if researchers do not use specific Sensor
Web encoding standards for their observations (e.g., O&M), we advise them to use
popular language-independent data formats to represent them. Later, this will enable
a greater interoperability, allowing other researchers to develop more easily specific
adapters to consume observations coming from third-party Sensor Webs. Depending
if researchers have made the choice to use ontologies or not, JSON10 and JSON for
Linked Data (JSON-LD)11 are two popular standards that have the advantage of being
human-readable.

� QoO attributes and documentation. Researchers should provide documentation for
all QoO attributes that are used and considered within their Sensor Webs. Regarding
custom QoO attributes, the documentation should also explain how to compute them,
providing mathematical formulas when possible.

3.5.4 Semantics and Ontologies

� Semantic Web best practices. It is essential that researchers follow existing methodologies
and best practices that have been defined, especially for Linked Data [133, 134] and
the Semantic Web [135]. Among these best practices, we want to highlight the reuse
and the alignment with maintained ontologies (Best Practice 12 in [135]) as well as the
alignment with the popular W3C SSN ontology (Best Practice 13).

7https://www.osgi.org
8https://maven.apache.org
9https://en.wikipedia.org/wiki/Software_design_pattern

10http://www.json.org
11https://json-ld.org

72

https://www.osgi.org
https://maven.apache.org
https://en.wikipedia.org/wiki/Software_design_pattern
http://www.json.org
https://json-ld.org

� Alignment of custom ontologies with W3C SSN. The SSN ontology is one of the few
standards that have emerged to annotate observations and describe sensor capabilities
for sensor-based systems. Since ontologies allow reuse and alignment, researchers
should consider to import and align their concepts with the SSN ones when developing
custom ontologies. Besides, they may not need to reuse all SSN concepts but only
those that may be relevant for their use case. SSN-based ontologies enable better
interoperability and evolutivity as the SSN ontology is still actively maintained and
enhanced. As previously mentioned, the W3C has recently announced a partnership
with the OGC in order to better align SSN with OGC SWE O&M specifications12. While the
new SSN release is still in draft stage13, it is already expected to better support actuators,
with a lighter core module called “Sensor, Observation, Sample, and Actuator” (SOSA). It
should also be more simple to use it: while the old SSN release relied on a quite complex
Observation -> SensorOutput -> ObservationValue chain, the new SSN release brings
simplification by rather considering a simple Observation -> Result relationship.

� On the reuse of popular ontologies. A lot of ontologies have already been developed.
Before developing a new one, researchers must perform a search to verify that they are
not reinventing the wheel. However, they should take care to only reuse popular and
well-maintained ontologies. Also, researchers should remember that ontologies allow
them to import only some parts of other ontologies (individuals, classes, attributes,
relationships, etc.) in case they do not want to import an entire ontology.

� Ontology complexity. Ontology high-level reasoning such as inference can be costly as
the number of concepts, relationships and/or constraints increase. Researchers should
try to keep their ontology simple by only defining the concepts that are really needed for
their use case(s). It will still be possible to add new ones later.

3.5.5 Storage and Observation Retention

� Retention model for received observations. Researchers who work with observation
streams should consider the way observations will be delivered to final consumers.
If these need to access historical observations, it may be adequate to define several
processing layers (real-time and batch such as in the Lambda architecture14). You may
also use a single layer (Kappa architecture15) and set a maximum retention time for the
message broker(s).

� Shock absorbing technologies. Researchers’ Sensor Web should act as a middleware
between observation producers and consumers. Regarding throughput, the bottleneck
is generally located at consumer side. This means that a Sensor Web solution will be
asked to play a buffer role by retaining all observations that do not have been consumed
yet. To address this issue, researchers should use some “shock absorbing technologies”

12http://w3c.github.io/sdw/ssn/#OM_Alignment
13http://w3c.github.io/sdw/ssn
14http://lambda-architecture.net
15http://milinda.pathirage.org/kappa-architecture.com

73

http://w3c.github.io/sdw/ssn/#OM_Alignment
http://w3c.github.io/sdw/ssn
http://lambda-architecture.net
http://milinda.pathirage.org/kappa-architecture.com

such as message brokers (language-independent) or have a look to the Reactive Streams
initiative (for Java and JavaScript programming languages mostly). Last but not the least,
we recommend to choose a message broker based on the features that it provides (dis-
tributed deployment, routing, APIs and available clients, etc.) rather than on some
benchmark-related performances.

� Worst-case scenarios. Depending on their use case, researchers may want to add some
contingency plans in case of malfunction of their observation storage and/or deliv-
ery solution. Some message brokers allow distributed deployments (cluster) with a
redundancy factor to cope with node failures or high traffic loads.

3.5.6 System Adaptation

� Autonomic maturity level. Adaptation feature is often motivated by a need to automate
some decisions and actions. Researchers should think carefully about the processes that
they may want to delegate to their solution. For some critical decisions, it may be better
to develop systems that only suggest possible corrective actions to domain-specific
experts rather than automatically perform them.

� MAPE-K endpoints and internal messages. Researchers interested in an Autonomic
behavior for their Sensor Web should first define the components of their MAPE-K (or
equivalent) adaptation control loop. In particular, this task requires to list the sensor
endpoints and actuators, as well as any useful information that can be retrieved (CPU
statistics, throughput, battery level, etc.). Once this step completed, they will be able to
define an adaptation strategy. An adaptation strategy is generally composed of many
symptoms that can trigger actions on certain conditions. Defining the adaptation
strategy will allow them to identify the required internal messages between Monitor,
Analyze, Plan and Execute components. Finally, researchers should remember that there
is not a single way to implement an adaptation control loop.

� Knowledge base design. The Knowledge base can be seen as the “brain” of a Sensor
Web, conditioning how it will react, adapt and reconfigure itself. Simple if... then...
rules may be suitable for quick prototyping but researchers interested in more complex
reasoning may want to have a look to ontology inference or rule engines. For scalability
reasons, they should try to limit the number of rules by precisely identifying the different
reconfiguration scenarios. They may also want to limit the number of QoO attributes
considered.

3.5.7 Deployment

� Local versus Cloud deployments. A local deployment on recent hardware is often suf-
ficient to run a prototype as a first proof of concept. Cloud-based deployments are
often only required in case of strong non-functional requirements such as scalability
and availability. In any case, local deployments may be used to validate integration,

74

adaptation strategies and to properly configure third-party software. An alternative solu-
tion may consist in using container-based virtualization (e.g., Docker) for performance
evaluation or deployment.

� Cloud-based deployments. Cloud-based deployments suit best for component-based
architectures where there is a strong separation of concerns. If you want to follow a mi-
croservices approach, researchers may want to have a look to actor-based or agent-based
frameworks. Indeed, most of them allow remote communication (e.g., Akka16 toolkit),
relieving developers to implement the communication logic between components. It
should be noted that Cloud Computing relies on resource sharing and may introduce
additional overhead compared to local deployments. In particular, researchers may not
be assured that all Cloud servers will be geographically located in the same geographic
area. This can potentially add latency and impacts QoO for the observations that will
flow in and out of their distributed Sensor Web.

� Deployment automation. For Sensor Web requiring third-party software, researchers
may want to automate the build and/or the deployment of their solution. This is particu-
larly true for a Sensor Web that requires updates or frequent restarts. Many commercial
and open source solutions exist to model and automate Cloud-based deployments so
researchers should choose the one that fits best their needs. Among them, it is worth
mentioning Cloudify17, which stays relatively agnostic of the final Cloud provider.

3.5.8 Performances and Evaluation

� Prototyping and testing. Researchers should integrate third-party software little by little,
by testing regularly. If possible, they should make assumptions and set acceptable
limits/thresholds for some key performance indicators (e.g., throughput or memory
used). They should make sure to read the documentation of these third-party software in
order not to introduce additional biases regarding QoO. Finally, it is sometimes required
to deeply understand how a software works to figure out what options are the most
relevant in terms of QoO.

� Parameter tuning and QoO evaluation. As previously seen, QoO may depend on many
parameters. In order to see the impact of a configuration change, researchers should only
tune/evaluate one parameter at a time. They should carefully choose the right tools to
evaluate QoO, making sure that they do not substantively bias QoO-related experiments.
For instance, Docker uses an underlying virtual machine to deploy containers on Mac
and Windows operating systems (contrary to the Linux release). As it may introduce
overhead, such setup should not be used to evaluate observation latency.

� Sensor Web evaluation. Researchers should focus on the evaluation of the benefits
arising from the use of their solution, independently of the third-party software they
chose to build it. Even if some technical considerations are important (throughput,

16http://akka.io
17http://cloudify.co

75

http://akka.io
http://cloudify.co

response time, etc.), they should always be put in perspective with Sensor Web’s initial
requirements and use cases. Finally, in the case where it has been developed following
our QASWS Generic Framework, a Sensor Web should mainly provide added value to
end consumers (QoO-based adaptation, QoO visualization, etc.).

3.6 QASWS Framework Evaluation

This section completes our framework proposal by evaluating it against the initial require-
ments. In order to be usable in conjunction with the existing, we also position it regarding the
main architecture frameworks identified in Section 3.2.2.

3.6.1 Compliance with General Requirements

In order to evaluate our QASWS Generic Framework, we first analyze how the different models,
architectures and guidelines that we presented have addressed the initial general requirements.
For each initial requirement, we highlight which model, architecture view and/or guidelines
of our QASWS framework may be used to address it. Tables 3.6 and 3.7 list the evaluation of all
functional and non-functional requirements, respectively.

76

ID Description Models Views Guidelines

F1 QASWS as a mediator
Functional
Adaptation

Functional
Observation
Adaptation
Deployment

General technological choices
Architectural choices
Semantics and ontologies
Performances and Evaluation

F2 Heterogeneous observation producers Domain Deployment
Architectural choices
Obs. format. and charac.
Semantics and ontologies

F3 Support for unbounded observation streams
Domain
Adaptation

- Storage and observation retention

F4 Different observation granularity levels
Observation
Functional
Adaptation

Functional
Observation
Deployment

-

F5 SLAs with optional QoO constraints Domain
Functional
Observation
Deployment

General technological choices

F6 Automatic resource discovery at runtime - Deployment -

F7 Service characterization for QoO Pipelines
Domain
Adaptation

Deployment -

F8 Continuous QoO monitoring -
Functional
Adaptation
Deployment

Adaptation

F9 QASWS feedback Adaptation
Functional
Observation
Deployment

General technological choices
Adaptation

Table 3.6 – Evaluation of our generic framework for QASWS (functional requirements)

77

ID Description Models Views Guidelines

NF1 QASWS adaptation Adaptation Adaptation Adaptation

NF2 QoO adjustment at reasonable cost Adaptation
Functional
Adaptation
Deployment

Adaptation

NF3 QASWS scalability - -
Architectural choices
Storage and observation retention
Deployment

NF4 QASWS modularity and reusability Domain Observation
Obs. format. and charac.
Semantics and ontologies

NF5 Reactive observation delivery - Observation Storage and observation retention

NF6 QASWS extensibility (sensors) Domain Deployment
Architectural choices
Obs. format. and charac.
Semantics and ontologies

NF7 QASWS extensibility (QoO Pipelines) Domain Deployment -

NF8 QASWS interoperability Observation -

Architectural choices
Obs. format. and charac.
Semantics and ontologies
Deployment

Table 3.7 – Evaluation of our generic framework for QASWS (non-functional requirements)

78

From the tables, it can be noted that no requirement has been left aside. Even if this do not
guarantee that researchers will derive correct implementations for QASWS, it at least shows
that our proposal is in harmony with identified research challenges and that it can be used to
address them.

3.6.2 Comparison with Related Work

The objective of our QASWS is primarily to focus on the design of QoO-aware and adaptive
systems that comply with the Sensor Web vision. However, our framework does not address
many other requirements such as Security and Privacy for instance. For that reason, we argue
that our proposal is a complement to already existing architecture frameworks and reference
models:

From an OGC SWE perspective our generic framework complies with the original vision of
Sensor Web, bridging the gap between sensor capabilities and consumer needs. Yet,
differently from SWE 2.0 specifications, we envision several observation granularity
levels, semantics and middleware-based adaptation. We believe that this contributes to
develop a more accurate definition for Sensor Web systems, which now should integrate
virtual sensors and handle unbounded observation streams.

From an ITU-T perspective our framework complies with the ITU-T IoT Reference Model [49,
50]. Its Device and Network layers correspond to our Observation producers and Sensor
layer; its Service support & Application Support corresponds to our Sensor Web layer
and its Application layer corresponds to our Observation consumers and Application
layer. Finally, we also envision a Management cross-layer (Management & Adaptation
layer) but do not consider Security capabilities (see also Chapter 6 for perspectives and
possible improvements to our generic framework).

From the IoT-A ARM perspective our framework is also presented with the use of several
requirements, models and views. As previously mentioned, our QASWS framework
rather focuses on QoO and QoO-based adaptation from an application-specific manner.
However, at functional level, both frameworks are complementary and can be used
jointly. For instance, the IoT-A ARM can be used to address device communication or
security while our QASWS framework can be used to cope with QoO and adaptation
challenges.

According to the Cisco’s IoT Reference Model our framework covers several levels such as
level 4 (Data Accumulation), level 5 (Data abstraction) and level 6 (Application). It is
worth noting that, within Cisco’s reference model, a QASWS can be considered as an
application as it provides reporting, analytics and control.

3.6.3 Discussion

In this section, we have been committed to evaluate our generic framework for QASWS. As
an abstract framework, it was difficult to concretely show the relevance or correctness of our

79

proposal without considering a use case. Therefore, we chose to evaluate it as a whole, without
foreseeing QASWS solutions that could be instantiated from it.

First, we showed that each general requirement was mapped to at least one framework
resource (i.e. a model, a view or a guideline). While this does not provide any guarantees
regarding future solutions that may be created from it, it still demonstrates that our proposal
fits into the QASWS vision, envisioning both QoO-aware and adaptive Sensor Webs.

Second, we positioned our contribution in relation to main architecture frameworks and
reference models for Sensor Webs and the IoT. Despite the fact that this review process was
complex to perform in an objective manner, we highlighted common features and main
differences between our proposal and the existing related work. This evaluation allowed us
to identify common grounds between frameworks. We believe that such evaluation may be
crucial to select and use many of them together, especially when several frameworks should
concurrently be used to fulfill multiple requirements for a use case.

3.7 Summary of the Chapter

This chapter has introduced the first contribution of this thesis, which is a generic frame-
work for QoO-aware Adaptive Sensor Web Systems (QASWS). By showing limitations of the
existing (OGC SWE, ITU-T and IoT-A ARM), we motivated the need for a new architecture
framework that takes into account the three research challenges identified in the context
of this thesis (integration, QoO, system adaptation). Based on the international standard
ISO/IEC/IEEE 42010 for architecture description, we presented a generic framework com-
posed of three main specifications. First, we presented a reference model composed of several
sub-models that describes key concepts and abstractions used by the framework. Then, using
these models, we introduced a reference architecture composed of several views. Each view
addresses a specific concern from a developer perspective. Finally, we listed a set of reference
guidelines intended to help researchers and developers to use our generic framework. These
best practices aim at facilitating the development of concrete implementations and, therefore,
are complementary to the introduced models and views.

We evaluated our QASWS framework based on 17 initial general requirements before posi-
tioning it regarding the state of the art. This evaluation confirms that our generic framework
can be used together with other frameworks in order to address more challenges, such as
device communication or security for instance. Overall, our QASWS framework aims to foster
the development of new QoO-aware and adaptive Sensor Webs from scratch, achieving the
initial Sensor Web vision for more complex environments and deployment scenarios such as
those that can be found within the IoT.

The two next chapters will present the second contribution of this thesis, which is a
concrete Sensor Web implementation that instantiates our QASWS Generic Framework. As
a result, we conceive an integration platform for QoO Assessment as a Service (iQAS). This
platform has been specially designed, developed and deployed from scratch to address the
three research challenges. While Chapter 4 presents iQAS development life cycle, Chapter 5
evaluates it and provides deployment scenarios for the platform.

80

Chapter 4
iQAS: an Integration Platform for Quality
of Observation Assessment as a Service

“If something is worth doing once, it’s worth building a tool to do it.”

- Anonymous

Contents
4.1 Introduction . 82

4.2 Motivation for a New Sensor Web Proposal . 83

4.2.1 Reminder of Existing Sensor Webs . 83

4.2.2 Existing Commercial Platforms . 84

4.2.3 Existing Software Products . 84

4.3 Instantiation of our Generic Framework for QASWS 86

4.3.1 Methodology Followed . 86

4.3.2 Use Cases and Specific Requirements for iQAS 87

4.3.3 Discussion . 89

4.4 Implementation Choices for the iQAS Platform 89

4.4.1 General Approach . 89

4.4.2 Programming Language and Frameworks 90

4.4.3 Persistence and Reasoning . 92

4.4.4 Discussion . 93

81

4.5 Design . 94

4.5.1 iQAS Observation Model . 95

4.5.2 iQAS Processing Model . 97

4.5.3 iQAS Adaptation Model . 99

4.5.4 Discussion . 101

4.6 Implementation . 101

4.6.1 The iQAS Ecosystem . 102

4.6.2 Handling New Observation Requests . 104

4.6.3 Providing System Adaptation . 107

4.6.4 Discussion . 110

4.7 Usage and Deployment . 111

4.7.1 Configuring iQAS . 111

4.7.2 Interacting with iQAS . 111

4.7.3 QoO Pipeline Development Walk-through 114

4.7.4 Discussion on Possible iQAS Deployments 117

4.8 Summary of the Chapter . 118

4.1 Introduction

Previous chapters have shown limitations of existing Sensor Webs solutions regarding integra-
tion, QoO or system adaptation issues. This statement has motivated the development of a
generic framework to foster the development of new QASWS. In a complementary manner, we
believe that the proposal of a concrete prototype that instantiates this framework may also be
of interest to researchers and developers. In particular, this may be an opportunity to describe
and explain some critical choices (e.g., programming language, architecture, software used,
etc.) that should be made through the development of such proof of concept.

As a consequence, this chapter presents the second contribution of this thesis, which is
an integration platform for QoO Assessment as a Service (iQAS). iQAS is a custom Sensor
Web solution that we developed from scratch based on our generic framework for QASWS.
Regarding its features, the iQAS platform aims to specifically address main research challenges
identified in this thesis and, therefore, focuses on integration, QoO and system adaptation.

QoI or QoO assessment? Initially, we presented iQAS as an “integration platform for
QoI Assessment as a Service” [4]. The evolution from QoI to QoO is logical in the sense
where QoI is a multidimensional notion that depends on other quality dimensions such
as network QoS. For instance, Table 2.1 has shown that many attributes are not only
related to observations but also to sensors and end-to-end observation transport. In the
following, we will use the term “QoO assessment” instead of “QoI assessment” to highlight
the complex nature and relationships of the quality attributes that can be supported by
the iQAS platform.

82

This chapter is organized as follows. First, it motivates the needs for developing a new
Sensor Web solution that complies with our QASWS framework. In particular, we show that
no adequate approach (among Sensor Webs, commercial platforms or software) is currently
available to address identified issues regarding integration, QoO and system adaptation at
the same time. Then, this chapter explains how to derive a concrete implementation from
our generic framework. It also details and justifies the main architectural and technological
choices that were not covered by the framework. Finally, this chapter goes through different
steps of the development life cycle for the iQAS platform, namely design, implementation,
deployment and usage.

4.2 Motivation for a New Sensor Web Proposal

This section aims to provide a more complete survey of the closest approaches from QASWS
that can be used to cope with the three research challenges previously identified. Although it
reminds limitations for some previously surveyed Sensor Webs, we also extend our analysis to
some commercial platforms and software. Since we have had the chance to test most of them,
we performed a subjective meta-analysis of their suitability to address integration, QoO and
system adaptation issues. The results of this analysis are gathered in Table 4.1 and serve as a
basis to motivate the need for iQAS, a new QASWS proposal.

4.2.1 Reminder of Existing Sensor Webs

Previously, in Section Survey of Existing Work of Chapter 2, we already highlighted current
trends and main gaps to be fulfilled by future Sensor Web solutions. We remind the reader
that, in a compliant way with our accepted definition, Sensor Webs can be either sensor
middlewares or IoT platforms.

From the state of the art, we have found that SIXTH [29], OpenIoT [121], the 52°North
Sensor Web [8], CityPulse [37] and GSN [106] could be considered as the closest proposals from
QASWS. However, we also found that these five solutions mainly focus on integration issues, to
the detriment of QoO and system adaptation concerns. For instance, SIXTH and the 52°North
Sensor Web have been conceived to integrate heterogeneous sensors but do not consider
QoO nor QoO-based adaptation. GSN is able to integrate virtual sensors but only performs
Context-based adaptation regardless of QoO. On the contrary, OpenIoT does consider QoO
attributes. However, it lacks of common mechanisms to provide QoO guarantees and expects
from the user to specify which mechanisms should be enforced. CityPulse provides QoO-
based adaptation with an adaptation control loop [136]. However, QoO is computed based
on underlying sensor capabilities and updates, which may be not representative of the actual
QoO experimented by final consumers (e.g., freshness that may be impacted by both sensor
capabilities and network QoS). Moreover, the adaptation process appears to be quite specific to
Smart Cities (domain-specific ontologies) and does not consider the deployment of common
mechanisms to “heal” an observation stream that violates a SLA.

Overall, existing Sensor Webs are quite difficult to use and to interact with. This can
be explained in part by the fact that they often rely on several components, which should

83

be configured and launched separately (e.g., monitoring service, processing service, etc.).
Sometimes, they also lack of APIs in order to be used by other Sensor Webs or applications.
Despite the fact that they are all open source solutions, few of them are easily extensible
without requiring a long learning phase.

4.2.2 Existing Commercial Platforms

We denote as “Commercial Platforms” any commercial Cloud-based solution that provides
online services for subscription. A large number of these platforms are now dedicated to the
IoT and to the processing of sensor-based observation streams. However, the fact that these
platforms are generally not open source has led us to distinguish them from Sensor Webs.
Furthermore, as their extensibility and interoperability are quite limited, we argue that these
solutions cannot be considered as fulfilling the Sensor Web vision. Nevertheless, commercial
solutions still should be taken into account when performing a state of the art as they are often
representative of current trends within Industry.

Amazon Kinesis1, Google Cloud Dataflow2, Microsoft Azure Stream Analytics3 and IBM
Watson IoT4 are four examples of commercial IoT platforms that offer stream analytics as
a Service. Compared to previous Sensor Webs, these platforms are much easier to use and
provide web-based interfaces (Software as a Service or SaaS). However, even if developers have
the possibility to define custom processing functions that may mimic QoO mechanisms (e.g.,
with Amazon Lambda functions), observation pipelines should be built from available com-
ponents only. Finally, these platforms generally deal with sensor integration by providing a
limited choice of connectors while all the logic behind system adaptation is left to manual
implementation. In both cases, this “catalog approach” raises numerous issues as a vendor
can deliberately limit the interoperability and the extensibility of its platform by invoking
competitive reasons.

4.2.3 Existing Software Products

Many software products have been proposed for Stream Event Processing (SEP), Data Pro-
cessing and Machine Learning. Here, we focus on five open source software products (under
Apache license) that are experiencing renewed interest from researchers for concrete IoT-
related implementations.

Apache Spark5 and Spark MLlib6 are two software for large-scale Machine Learning and
data processing. They are often used to enable reasoning on received observations. In order to
implement a Machine Learning mechanism, developers should write their own programs (in
Java, Scala, Python or R). However, as an external software, the integration with observation
sources should be performed manually. Kafka Streams API7 is “a client library for processing

1https://aws.amazon.com/kinesis
2https://cloud.google.com/dataflow
3https://azure.microsoft.com/services/stream-analytics
4https://www.ibm.com/internet-of-things
5https://spark.apache.org
6https://spark.apache.org/mllib
7https://kafka.apache.org/documentation/streams

84

https://aws.amazon.com/kinesis
https://cloud.google.com/dataflow
https://azure.microsoft.com/services/stream-analytics
https://www.ibm.com/internet-of-things
https://spark.apache.org
https://spark.apache.org/mllib
https://kafka.apache.org/documentation/streams

and analyzing data stored in Kafka”. This library may be used to implement QoO mecha-
nisms since it allows to directly perform operations on observations stored into Kafka topics.
However, developers still have to write, deploy and manage themselves their different QoO
mechanisms (Filtering, Caching, etc.). Finally, Kafka Streams API does not fully address issues
concerning sensor and observation integration as it assumes that observations are always
available and formatted according to a schema known in advance. Apache NiFi8 is a software
for the definition of scalable directed graphs of data. It offers a user-friendly web-based inter-
face where developers may define custom observation flows using processors that can perform
advanced operations such as conditional routing and formatting. Due to the great number
of processors available, NiFi may be used to integrate different kinds of sensors (databases,
message brokers, raw files, logs, etc.). Moreover, developers may easily develop their own pro-
cessor that implements a given QoO mechanism. Unfortunately, this software neither enables
system adaptation nor implements adaptation control loop(s) since observation flows are
statically defined and cannot evolve at runtime. Finally, Apache Flink9 is a stream-processing
framework. This SEP software may be used to implement powerful QoO mechanisms in a
scalable and distributed way. In the same manner than Kafka Streams API, developers should
write, deploy and manage themselves their different QoO mechanisms.

Research Challenges

Open
Source

Ease of
use, Inter-

action
Integration QoO

System
Adapta-

tion

Se
n

so
r

W
eb

s SIXTH X ++ +++ + +
OpenIoT X ++ +++ ++ ++

52°North Sensor Web X + +++ + +
CityPulse X ++ +++ ++ ++

GSN X ++ ++ ++ +

C
o

m
m

er
ci

al
P

la
tf

o
rm

s

Amazon - Kinesis × +++ ++ ++ +
Google - Cloud Dataflow × +++ ++ ++ +
Microsoft - Azure Stream

Analytics
× +++ ++ ++ +

IBM - Watson IoT × +++ ++ ++ +

So
ft

w
ar

e

Kafka Streams API X + + +++ N/A
Apache NiFi X +++ +++ ++ N/A

Apache Spark X + N/A +++ N/A
Spark MLlib X + N/A +++ N/A
Apache Flink X + + +++ N/A

Table 4.1 – Meta-analysis of different approaches for observation processing. Each solution
has been rated as more or less suitable (+, ++, +++) to address the different research challenges;
“N/A” = Not Applicable.

8https://nifi.apache.org
9https://flink.apache.org

85

https://nifi.apache.org
https://flink.apache.org

4.3 Instantiation of our Generic Framework for QASWS

In previous section, we showed that the three main research challenges related to QASWS could
not be fully addressed only using a Sensor Web, a commercial platform or an existing software
at once. As a consequence, we propose iQAS, a novel Sensor Web compliant with the QASWS
vision, which stands for “integration platform for QoO Assessment as a Service”. To develop
iQAS, we relied on our generic framework for QASWS. More specifically, we instantiated a
concrete implementation according to the methodology presented in the next section.

4.3.1 Methodology Followed

As previously mentioned, the development of our Generic Framework has been driven by some
General Requirements. These high-level requirements were considered for a given System of
Interest (namely a QASWS) in order to address the different Concerns of its Stakeholders (see
Figure 4.1). In order to develop iQAS, we perform three additional steps. First, based on
both the General Requirements and the global context, we extract some Use Cases to consider.
Then, we refine the Use Cases into some Specific Requirements. Finally, we used these Specific
Requirements to concretely develop the iQAS platform. All along of the development process,
our Generic Framework is used as a reference to make important implementation choices (i.e.,
mainly architectural and technical choices). In the end, these different steps achieve the
instantiation of our generic framework into a concrete QASWS-compliant solution.

Generic Framework

QASWS
Reference Model

QASWS
Reference Architecture

QASWS
Reference Guidelines

General Requirements

Concerns

Stakeholders

Use Cases

Specific Requirements

System of
Interest

instantiation

Implementation
choices

Figure 4.1 – Methodology used to instantiate a concrete implementation from our QASWS
Generic Framework

86

4.3.2 Use Cases and Specific Requirements for iQAS

From the QASWS Generic Framework, we distinguish four main actors that may interact with
the iQAS platform: domain-specific experts, users, applications and sensors. These actors may
want to perform use cases that are presented in Figure 4.2 in the form of circled actions. For
better clarity, we regroup the use cases into three distinct categories depending if they were
related to Observation Storage, to Mediation or to Management and Reasoning.

Browse and query
QoOnto ontology

(Re)load
QoO Pipelines

Discover
QoO Pipelines

Management and Reasoning

Observation Storage

Define
QoO attributes

Monitor QoO level

if QoO level not satisfied:
-adapt_qoo_level

if QoO level not reachable:
-cancel_request

Find a suitable
QoO Pipelines

Submit
observation request

if QoO constraints exist:
-enforce_sla

-monitor_qoo_level

Manage
sensors

Adapt QoO
level

Enforce SLA

Check
available
sensors

Subscribe to specific
observations

Cancel
observation

request

Retrieve info about
the iQAS platform

Update
QoOnto

ontology

Define
QoO Pipelines

<VirtualApp>
Application

<Human>
User

<Human>
Domain-specific

expert

Publish observations

<VirtualSensor>
Sensor

Mediation

«includes»

«includes»

«includes»«includes»

«extends»

«includes»

«extends»

«extends»

«extends»

«includes»

«includes»

«includes»

Figure 4.2 – Overview of main actors and use cases for the iQAS platform

We now briefly describe the main use cases that each actor can perform. Please note that
some use cases may involve the fulfillment of other use cases in an optional («extends») or in a
systematic («includes») manner.

Sensor A sensor is considered as a virtual instance (<VirtualSensor>) that abstracts its actual
type (physical, logical, virtual). This actor may only publish observations to the iQAS
platform.

87

Application An application is a computer program (<VirtualApp>) that is able to subscribe
to specific observations. It should be noted that an application inherits from a user
regarding the different actions that it may perform.

User A user is a human being interested by observations with a certain QoO level. In that way,
he/she may submit new observation requests, cancel them and retrieve information
about the iQAS platform (such as feedback).

Domain-specific expert A domain-specific expert (e.g., meteorologist) is a human being that
has a great knowledge of a certain specific domain such as weather forecast. To ensure
the good working of the platform, he/she may manage sensors (addition or removal),
define new QoO Pipelines to heal observation requests and define new QoO attributes
of interest. He/she may also browse and query the QoOnto ontology that makes the link
between all previous concepts. Of course, a domain-specific expert may also be a user
of the iQAS platform and, in this case, inherits of all his/her use cases.

We now derive specific requirements that should express the concerns of users and domain-
specific experts regarding the features offered by iQAS. Each specific requirement may aggre-
gate many general requirements. Compared to general requirements, these new requirements
are specific to the iQAS platform. For that reason, they will be reused in the next chapter to
perform iQAS evaluation. To distinguish specific from general requirements, we add the prefix
“i-” in front of their identifier (for “iQAS”), for both functional and non-functional specific
requirements (see Table 4.2).

ID Description

i-F1 Users should be able to submit observation requests with SLAs.

i-F2
Users should be able to subscribe to observations that comply with the submitted
SLAs.

i-F3 Users should be able to retrieve feedback from the iQAS platform.

i-F4
Domain-specific experts should be able to add/remove sensors to/from the
platform.

i-F5 Domain-specific experts should be able to define new QoO Pipelines.
i-F6 Domain-specific experts should be able to define new QoO attributes.

i-F7
Domain-specific experts should be able to express the impact of QoO Pipelines on
QoO attributes.

i-NF1 The iQAS platform should be adaptable.
i-NF2 The iQAS platform should be transparent.
i-NF3 The iQAS platform should be scalable.
i-NF4 The iQAS platform should be extensible.
i-NF5 The iQAS platform should be interoperable.

Table 4.2 – Functional and non-functional specific requirements considered for the iQAS
platform

88

4.3.3 Discussion

This section has presented the first steps to develop a QASWS prototype based on our generic
framework that we previously introduced. Inspired by the MDA approach [53], we proposed
a methodology to move from high-level specifications to a concrete prototype. In that way,
we described a methodology to instantiate our generic framework for QASWS (which can
be seen as a PIM according to the MDA terminology) and implement a QASWS-compliant
platform (PSM).

Having pointed out the limitations of existing Sensor Webs, we motivated the need for
iQAS, a new platform for QoO assessment as a service. Through its use cases and specific re-
quirements, iQAS aims at addressing three important research challenges for QASWS, namely
integration, QoO but also system adaptation. Next section presents and justifies main imple-
mentation choices with respect to the QASWS vision.

4.4 Implementation Choices for the iQAS Platform

In this section, we detail and justify the most important implementation choices that have been
made through the development of iQAS. For each important architectural or technological
choice, we explain what were the different available alternatives to us and how our final choice
fulfills the QASWS vision.

4.4.1 General Approach

Given the QASWS vision, iQAS should be a distributed Sensor Web able to handle infinite
observation streams. As a consequence, we relied on:

Component-based software engineering Component-based developments rely on the def-
inition on well-defined and reusable entities called “components”. A component may be a
software package, a Web Service, a Web resource, or a module that encapsulates a set of related
functions (or data)10. Within component-based architectures, each component takes care of a
sub-problem, providing a particular and well-identified service to others. We chose to imple-
ment iQAS by following a component-based approach as Component-based architectures:

• Enable separation of concerns;
• Reduce coupling between components;
• Allow modularity, reusability and composition;
• Rely on well-defined interfaces for the communication between components.

It should be noted that component-based architectures can be implemented in several ways.
Inspired by the actor model (see below), we envision actors as the main component type for
our iQAS platform.

10https://en.wikipedia.org/wiki/Component-based_software_engineering

89

https://en.wikipedia.org/wiki/Component-based_software_engineering

Actor model The Actor model is a mathematical model of concurrent computation [137]. It
defines an actor as a computational entity driven by a local behavior (state) that is able to send
and receive messages to/from other actors. In response to an incoming message, an actor can
concurrently:

• Send a finite number of message to other actors;
• Create a finite number of new actors;
• Modify its behavior, which will affect the way the next message(s) will be processed.

It should be noted that the actor model does not stipulate any specific order for above actions.
Besides, they can be carried out in parallel. The only constraint is that messages should
internally be processed in their order of arrival. We found this concurrent computation model
particularly adapted for the design of the iQAS platform for two main reasons:

• The actor model is suitable to easily implement a MAPE-K adaptation control loop by
creating one actor for each continuous process (monitor, analyze, plan, execute). This
will allow the different actors to emit symptoms, RFCs or actions based on the previous
received messages (local state that can be enriched by a shared Knowledge base).

• Actors may be used as an abstraction for deploying observation pipelines. Once it
has subscribed to an observation source (not necessarily a sensor here), an actor may
continuously process incoming observations before publishing to observation sink(s).
In this way, this actor can be seen as a reusable component that can be deployed several
times to provide the exact same service (e.g., conversion of Raw Data into Information,
Filtering, etc.).

Reactive Streams To correctly handle and process unbounded observation streams, we use
the Reactive Streams approach11 that advocates for “asynchronous stream processing with non-
blocking back-pressure”. This initiative mainly aims to address the issue of fast producers - slow
consumers, where producers could overwhelm the consumers. By enabling back-pressure
mechanism, Reactive Streams provides a graceful manner to handle high workloads: each
component can perform back-pressure by signaling to upstream components that it is under
stress and that they should reduce the load. To be noted that back-pressure may cascade all
the way up to the user, which can potentially degrades system responsiveness. However, it also
ensures that the system will always be resilient under load. Besides, since Reactive Streams
rely on asynchronous stream processing, producers and consumers are loosely-coupled and
can work independently at their own pace. Finally, we remind the reader that, as part of this
initiative, several Java and JavaScript APIs have been developed and may be reused to develop
new software.

4.4.2 Programming Language and Frameworks

Given the QASWS vision, iQAS should be easy to use, maintain and extend. In particular, it
should be easy for domain-specific experts to add custom QoO Pipelines so iQAS can adjust
more finely the QoO level.

11See http://www.reactive-streams.org and http://www.reactivemanifesto.org

90

http://www.reactive-streams.org
http://www.reactivemanifesto.org

Programming Language We chose to implement the iQAS platform in the Java programming
language version 1.8. Java was chosen for its cross-platform nature as compiled Java code
can run on all platforms where the installation of a Java Virtual Machine (JVM) is possible.
Thus, Java is designed to provide “write once, run anywhere” capability to developers [138].
Moreover, Java enables static typing and is often considered as a reference language when it
comes to Object-Oriented Programming (OOP). It also supports, amongst others, anonymous
functions (lambda abstraction), pipelines and streams. First released in March 2014, Java 1.8
has received continuous updates since then. Java has been used to develop many Sensor Webs
that we surveyed, such as the 52°North implementations of OGC SWE 2.012, OpenIoT [121] or
SIXTH [29] for instance.

Akka toolkit Unlike some programming languages such as Erlang13 or Elixir14, Java does not
provide built-in actors. As a result, the implementation of the actor model using Java requires
the use of a third-party library or framework15. In order to find the one that fits our needs, we
surveyed different solutions with a special interest for some features. In particular, we wanted
a library/framework that:

• Was open source and free to use;
• Had a clear and detailed documentation;
• Had an active community and was highly supported with frequent versions/updates;
• Provided an implementation of the Actor model;
• Was compliant with the Reactive Streams initiative;
• Was able to interact with third-party software such as message brokers.

In the end, we chose the Akka toolkit16, which is developed by Lightbend Inc. This toolkit
meets all above features and has proven its value in production for numerous commercial
use cases17. Furthermore, many tutorials, cookbooks and books have been written about
Akka [139], helping us to accelerate our learning and reduce the time spent on mastering
this library. It is worth mentioning that Akka envisions hierarchical relationships between
actors (with several top-level “guardian actors”). In this way, an actor can have child actors,
which cannot exist without it and that will shutdown if the parent actor terminates. This
mechanism facilitates actor organization, error handling and supervision. Besides, Akka “fully
implements the Reactive Streams specification and interoperates with all other conformant
implementations” by providing an Akka Streams API. Other benefits for using Akka include
but are not limited to:

• Event-driven model: actors perform work in response to messages. Actors communicate
in an asynchronous manner with each other. Each actor may send messages and
continue its own work without blocking to wait for a reply.

• Strong isolation principles: the public API of an actor is only defined through messages
that it can handle. It is not possible to directly call a method of an actor from another

12http://52north.org/communities/sensorweb
13https://www.erlang.org
14https://elixir-lang.org
15https://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks
16http://akka.io
17https://www.lightbend.com/case-studies#tag=akka

91

http://52north.org/communities/sensorweb
https://www.erlang.org
https://elixir-lang.org
https://en.wikipedia.org/wiki/Actor_model#Actor_libraries_and_frameworks
http://akka.io
https://www.lightbend.com/case-studies#tag=akka

one.
• Location transparency: the system takes care of actor creation and reference lookup.

Actors can be remotely invoked in the case of distributed deployments.
• Lightweight: according to the official website, “each [actor] instance consumes only a few

hundred bytes, which realistically allows millions of concurrent actors to exist in a single
application”.

For more details on the Akka toolkit, we encourage the reader to refer to its online documenta-
tion18.

4.4.3 Persistence and Reasoning

Given the QASWS vision, iQAS should be able to deliver large volumes of observations with
guarantees in terms of delivery order in a consumer-specific fashion.

Internal Storage Internal or “cold storage” is used to save iQAS settings, request states, etc. In
order to store settings and request states proper to an iQAS execution, we relied on MongoDB19,
a NoSQL database. MongoDB allows to easily store and retrieve JSON-like objects, without the
need to define schemas in advance. Furthermore, it can be deployed in a distributed way to
provide greater scalability if needed.

Observation Storage A strong desideratum was the decoupling between iQAS and the ob-
servation storage: at minima, we wanted that sensors could be able to continue to publish
observations, even if the platform was not running any longer (i.e., iQAS-independent storage).
To store observations outside of the iQAS platform, we relied on an external message broker
and the Publish-Subscribe pattern [65]. A message broker is a “shock-absorbing” technology
that allows developers to define several message queues (or topics) that act as buffers between
producers and consumers. Since most of message brokers are distributed, they offer a reliable,
high-throughput and low-latency observation distribution. With a message broker, producers
can asynchronously publish messages without waiting for a consumer to listen. When a
consumer is interested by a given topic, it subscribes to it and starts to synchronously listen for
messages coming directly from the message broker. Table 4.3 presents three popular message
brokers that we surveyed.

In the end, we chose Apache Kafka [140] for its integration with the Akka toolkit and for
its deployment/management simplicity. Kafka relies on the “log” data structure abstraction
and does not keep track of what messages clients have consumed (consumers do). Kafka
writes/reads messages directly from disk, leveraging kernel-level input/output. All messages
are retained during an adjustable retention time. It is difficult to evaluate performances
of a message broker since results may vary according to deployment, configuration and
message benchmarks themselves. The figures presented in Table 4.3 have been estimated
based on two comparative graphs from a LinkedIn20 technical report dated 2011 [141] to

18https://akka.io/docs
19https://www.mongodb.com
20https://www.linkedin.com

92

https://akka.io/docs
https://www.mongodb.com
https://www.linkedin.com

RabbitMQ Apache ActiveMQ Apache Kafka

First release 2007 2012 2014
Solution based on AMQP JMS N/A

Distributed yes (cluster) yes (Zookeeper cluster) yes (Zookeeper cluster)
Exchange types Queues, Topics Queues, Topics Topics

Routing support X X ×
Written in Erlang Java Scala

Producer performance
(messages/sec.)

25000 2000 50000

Consumer performance
(messages/sec.)

4800 5000 22500

Table 4.3 – Comparison of three popular message brokers

give an order of magnitude of the supported loads. Again, we kindly warn the reader that
these experimental results are highly dependent on software versions, configuration and used
benchmarks. Nevertheless, Kafka seems to be a particularly reliable and scalable solution,
with high-throughput delivery rate and low latency in the case of observation streams. It is
successfully used at LinkedIn to handle “more than 10 billion message writes each day with a
sustained peak of over 172000 messages per second”, delivering more than 55 billion messages
to consumers each day [142]. Given such figures, it is clear that consumers (e.g., an application
that should process each individual message) should be considered as the bottleneck when it
comes to message consumption.

Ontology Triple Store and Reasoning We first designed our QoOnto ontology using Protégé
software21. Then, we exported it under the Resource Description Framework (RDF) format. In
order to be able to store and query our QoOnto ontology, we chose to use the Apache Jena22

software. Jena’s triple store component allowed us to easily import our RDF ontology base
model and setup a reasoner for ontology inference.

We also used the Apache Fuseki software to set up a SPARQL server in order to be able
to query the RDF triple store from the iQAS platform. Besides Fuseki also provides ways to
retrieve, update and delete triples from a given dataset. Please note that RDF and SPARQL
are two common standards recommended by the W3C for enabling Semantic Web [56] and
Linked Data [57].

4.4.4 Discussion

This section has presented main implementation choices for the iQAS platform. While keeping
the QASWS vision in mind, we went through software engineering, programming language,
persistence and reasoning considerations. Whenever possible, we put QASWS challenges in
perspective with existing paradigms or existing software.

In the end, we chose to implement iQAS following a component-based architecture where
components can be actors. We also used the Reactive Streams approach to correctly handle

21https://protege.stanford.edu
22https://jena.apache.org

93

https://protege.stanford.edu
https://jena.apache.org

and process unbounded observation streams with guarantees in terms of delivery order. Then,
we decided to implement iQAS in Java 1.8 with the help of the Akka toolkit, using Apache
Kafka message broker as a “shock absorbing” technology in order to retain observations for a
certain amount of time. Next section presents specifications regarding observation encodings,
pipeline processing and system adaptation within iQAS.

4.5 Design

Figure 4.3 provides a high-level overview of the iQAS platform. iQAS intends to bridge the
gap between sensors (on the left side of the figure) and applications (right side). Each sensor
should publish its observations to a dedicated Kafka topic according to the kind of property
that it senses (temperature, visibility, etc.). We will see later in Section 4.6.1 how we specifically
achieved sensor abstraction and integration using Virtual Sensor Containers (VSCs).

MAPE-K
loop

QoO
report

Obs.
rate

report

appli1_58d39df

temperature,
visibility,

humidity, etc.

appli1

Physical, Logical or Virtual
sensors

Ingest
pipeline #1

Ingest
pipeline #2

QoO Pipeline
#1

Ingest
pipeline #3

appli2

appli3

appli4

appli2_46d69df

appli3_95d39df

appli4_aad39df

Output
pipeline #1

Output
pipeline #3

Output
pipeline #4

Output
pipeline #2

iQAS
storage

Ontology
triple store

GUI

API

Heal Pipeline
#3

Figure 4.3 – Overview of the iQAS platform: a QASWS that bridges the gap between sensors
and applications

Applications and users may submit new observation requests (i.e., SLAs with optional QoO
constraints) using the API or through the GUI, respectively. The enforcement of an observation
request may involve the deployment of several observation pipelines (e.g., Ingest and Output
in Figure 4.3) and QoO pipelines (QoO, Heal).

In this section, we give the main specifications that we considered for the iQAS platform
at design phase. In that end, we propose three iQAS-specific models (i.e., PSMs) to describe
implementation details regarding observations, their processing and system adaptation.

94

4.5.1 iQAS Observation Model

In compliance with our generic framework, Figure 4.4 shows the different fields for observa-
tions that should be handled and processed by iQAS.

Figure 4.4 – Class diagram for Raw Data, Information and Knowledge observations within iQAS

The RawData class defines attributes and methods that are common to the three observa-
tion levels (due to inheritance). The qooAttributeValues is a hash map object that allows to
manage the QoO attributes of an observation under a key/value form (e.g., accuracy = 100%).
To populate this map, the two methods setQoOAttribute() and setQoOAttributeValues() should
be used.

The Information class extends the RawData class. It allows to set a Context for a given
sensor with the method setSensorContext(). We decided to consider Context as information
about an observation producer. In this way, the transformation of RawData into Information
by iQAS involves an additional step of sensor Context retrieval for the sensor specified by the
producer attribute. For an iQAS consumer, Information can be seen as Raw Data that has been
enriched with the geographic location (latitude, longitude, altitude, relativeLocation) and the
kind of sensed property (topic) of the sensor that produced the observation measurement.

The Knowledge class extends the Information class. When instantiating a new Knowledge
object, the iQAS platform requires an ontologyBaseModel attribute and an Information obser-
vation. The ontologyBaseModel attribute is an OntModel class provided by the Apache Jena API

95

and allows to have an in-memory representation of an ontology (with concepts, relationships
and data types). By default, iQAS uses the QoOnto ontology model as ontologyBaseModel. For
each Knowledge object newly created, it creates a new OntModel and instantiates it with the
Information attributes (date, value, producer, timestamps, qooAttributeValues). Finally, the
Knowledge class overrides setQoOAttribute() and setQoOAttributeValues() methods so that any
QoO attribute will be represented according to the specified ontologyBaseModel.

RawData, Information and Knowledge are only internal object representations used by
iQAS to handle and process observations. In order to consume/publish these observations
from/to Kafka topics, iQAS uses JSON (for RawData and Information) and JSON-LD (for
Knowledge) representations to decode/construct Kafka ConsumerRecord/ProducerRecord.
Appendix D shows three examples of observations that have been processed by iQAS and that
can be retrieved by final consumers (by subscribing to a given Kafka topic).

Regarding QoO, it should be noted that iQAS punctually characterizes QoO just before
outputting observations. Therefore, QoO attributes added to an observation by iQAS are
only representative of its quality when this observation is made available for consumption
to final iQAS consumers (end applications and users) and not when final consumers may
decide to retrieve it. For this first release of the iQAS platform, we chose to focus on three
popular QoO attributes, namely observation accuracy, freshness and rate. In order to avoid any
ambiguity, we give the definition that we considered for each of them. We also explicit how
these attribute are computed by the iQAS platform:

• OBS_ACCURACY is the distance between a reported observation and its corresponding
phenomenon or event (see Table 2.1). In the case of the iQAS platform, some received
observations may not correspond to any occurred phenomenon or event. This is espe-
cially true when VSCs randomly generate them, making the computation of this QoO
attribute really challenging. In order to determine observation accuracy – even for
randomly simulated observations – we rather rely on semantics and sensor capabilities.
Indeed, since any new sensor connected to iQAS has to be described with the QoOnto
ontology, we use the sensor’s measurement range in order to estimate how accurate an
observation is. For one observation, accuracy is defined as follows:

OBS_ACCU R AC Y =

100 if obsmi n ≥ obs ≥ obsmax

0 if di st ≥ obsr ang e

obsr ang e −di st

obsr ang e
otherwise

(4.1)

where obsmi n and obsmax are the bounds of the observation range (obsr ang e) such as:

obsr ang e = obsmax −obsmi n (4.2)

di st =
{

obsmi n −obs if obs < obsmi n

obs −obsmax if obs > obsmax
(4.3)

We defined observation accuracy as such in order to penalize faulty sensors that output
observations out of their measurement range.

96

• OBS_FRESHNESS is defined as the age of an observation just before the iQAS platform
publishes it to a Sink topic. Annotated to each observation, it measures the additional
latency due to 1) transport time over the collection network and 2) iQAS processing time.
It is computed as follows: currentTimeMillis - observationProductionDate.

• OBS_RATE refers to the number of observations delivered by unit of time. It corresponds
to the iQAS throughput associated to a given request (e.g., 3/second). It is computed
by the platform by counting the number of observations effectively output to the Sink
topic of a given request. Contrary to the two previous attributes, this metric refers to an
observation stream rather than a single observation. For this reason, the platform is not
able to annotate each observation with this QoO attribute. Nevertheless, iQAS allows
consumers to submit SLAs with specific OBS_RATE requirements as QoO constraints.

As previously mentioned, QoO characterization is performed by iQAS just before an obser-
vation is made available to final consumers (i.e., published into the Kafka sink topic assigned
to request). Therefore, it is worth mentioning that some QoO attributes need to be recom-
puted over time in order to remain valid (e.g., the observation freshness). In this case, final
consumers should take over QoO assessment and implement their own adaptation strategies,
if needed.

4.5.2 iQAS Processing Model

QoO Mechanisms and QoO Pipelines were two important abstractions from our generic frame-
work. Within iQAS, we wanted to simplify at maximum the development of new QoO Pipelines.
As a result, we implement pipelines (both observation pipelines and QoO pipelines) as Java
classes that implements the IPipeline interface and extends the AbstractPipeline class (see
Figure 4.5). All QoO Pipelines should only specify two methods: getPipelineID() and get-
PipelineGraph(). The Graph object should be defined with the Akka Streams API: this is the
concrete implementation of a QoO Pipeline that processes observations from one Kafka topic
to another. Section 4.7.3 will provide a complete QoO Pipeline development walk-through.

Each Graph object is built by chaining different Akka FlowShapes, which are the concrete
implementation of QoO mechanisms within the iQAS platform. Listing 4.1 shows an example
of a Filter QoO Mechanism that processes RawData observations. This Filter mechanism only
forwards observations that have been produced by the sensor called “sensor01”. Others are
simply discarded and not emitted to the following FlowShape of the Graph. Please note that
Akka considers an observation stream as a Flow of objects and, thus, a Raw Data observation
stream is modeled as Flow.of(RawData.class). Moreover, the use of lambda expressions allows
to write more concise code and improves its readability. As previously mentioned, Kafka topics
serve as buffers between pipelines, retaining observations for a certain amount of time.

Let us now consider more precisely the enforcement of an observation request by iQAS. Fig-
ure 4.6 shows an example (detailed zoom for Figure 4.3) of three pipelines (Ingest pipeline #1,
QoO Pipeline #1 and Output Pipeline #1) that successively consume, process and publish
observations within the different Kafka topics. With this three-pipeline chaining, iQAS may
be able to meet the SLA submitted by appli1. The different sensors publish to topics that we

97

Figure 4.5 – Class diagram for 2 observation pipelines (IngestPipeline, OutputPipeline) and 2
QoO Pipelines (FilterPipeline, ThrottlePipeline). All pipelines should implement the IPipeline
interface while extending the AbstractPipeline class.

denote as “source topics” (e.g., the temperature topic in Figure 4.6). Topics used as interme-
diary buffers are therefore denoted as “intermediary topics” (e.g., temperature_ALL_RD and
temperature_ALL_RD_QOO1). Finally, for each observation request, the iQAS platform creates
a “sink topic” (e.g., appli1_58d39df) to which a final application may subscribe to.

In the end, iQAS’ processing model can be seen as a graph with several processing stages.
Each processing stage is associated to a pipeline implemented by an actor that processes
observations from one Kafka topic to another. This mechanism enables reusability, modularity
and incremental extension of the current graph as some processing stages may be reused to
satisfy newly submitted requests.

1 f i n a l FlowShape <RawData, RawData> filterQoOMech = builder.add(
2 Flow.of(RawData. c l a s s).filter(o −> {
3 return o.getProducer().equals("sensor01");

4 })

5);

Listing 4.1 – Implementation of a QoO Mechanism within iQAS

98

MAPE-K
loop

appli1_58d39df

appli1 Ingest
pipeline #1

QoO Pipeline
#1

Output
pipeline #1

temperature

temperature_ALL_RD temperature__ALL_RD_QOO1

QoO
report

Obs.
rate

report

Figure 4.6 – The enforcement of an iQAS request involves many pipelines that use Kafka topics
as intermediary buffers

4.5.3 iQAS Adaptation Model

IQAS provides a simple but powerful API that allows the submission of JSON-like SLAs. It
is worth mentioning that users can also directly submit their SLAs using a web-based user-
friendly GUI. In both cases, the resolution of these SLAs is performed by the MAPE-K loop
with ontology reasoning and inference, according to the Knowledge base. In particular, we will
see that the platform is able to directly reject a request if no sensor has been found for a couple
topic/location for a given request. Please note that, differently from our generic framework,
we decided to only consider one MAPE-K adaptation control loop for the whole platform.
This choice has been made in order to focus on QoO-based adaptation (auto-configuration,
reconfiguration) rather than the management and orchestration of the different Autonomic
Managers (exchanged messages, SLA translations).

Figure 4.7 presents the adopted actor hierarchy for the implementation of the MAPE-K
loop. Each process (Monitor, Analyze, Plan, Execute) is modeled as one or several actors. We
chose to create a root Autonomic Manager actor (AM) for better orchestration in the case
where we would break the logic into several adaptation control loops as suggested by our
generic framework. At launch of the iQAS platform, the AM actor creates three child actors,
namely Monitor, Analyze and Plan actors. Then, according to the received SLAs, the Plan actor
may create different Execute actors that implement and run the different pipelines, fulfilling
the different observation requests.

The proper functioning of iQAS’ MAPE-K loop relies on the exchange of internal mes-
sages (MAPEKMsg) between its different actors. Each message contains the date at which it
has been created (creationDate) and the EntityMAPEK that it is about. For instance, MAPE-K
messages may be about a specific request, a pipeline, a sensor, etc. All MAPE-K actors have
been implemented to keep a local state, each MAPEKMsg being retained for an adjustable pe-
riod of time. Regularly, MAPE-K actors populate and/or update the Knowledge base while their
local history is used to triggered the emission of new internal messages on certain conditions.

The Monitor actor may send SymptomMsg messages to the Analyze actor. Associated with
the EntityMAPEK attribute, the SymptomMAPEK may serve to announce a NEW REQUEST, a

99

Autonomic
Manager

Monitor Analyze Plan

Execute
#1

Execute
#2 …

Figure 4.7 – Actor hierarchy for iQAS’ MAPE-K loop

REMOVED SENSOR, etc. Once enforced, a request always involves an IngestPipeline and an
OutputPipeline that periodically report QoO level to the Monitor actor (see Figure 4.3). In this
way, iQAS may enable QoO-based adaptation by reasoning on observation rate (reported by
the IngestPipeline) and other QoO attributes (reported by the OutputPipeline). The Analyze
actor may send RFCMsg messages to the Plan actor. Associated with the EntityMAPEK at-
tribute, the RFCMAPEK may serve to ask for a request creation (CREATE REQUEST), a request
healing (HEAL REQUEST), a Kafka topic deletion (REMOVE KAFKA_TOPIC), etc. Finally, the
Plan actor may take appropriate actions in response of RFCMsg. It may generate some Action-
Msg, which are then fulfilled by different Execute actors. These actions can be about Kafka
topics (ActionMsgKafka) or pipelines (ActionMsgPipeline) and should be represented using the
appropriate classes. Please note that the Plan actor manages and supervises itself the different
Execute actors that it creates, as shown by the actor hierarchy presented in Figure 4.7.

Last but not the least, Figure 4.9 shows the different possible states of an observation
request within the iQAS platform. If the HTTP payload submitted to iQAS API contains a
well-formed JSON request, a request object is created by the platform and request state is set
to “CREATED”. Then, iQAS tries to find virtual sensors able to meet the topic and location
constraints. If none has been found, the request state is set to “REJECTED”. If at least one virtual
sensor satisfies the topic-location constraints, iQAS updates the request state to “SUBMITTED”
and starts to construct and deploy its observation graph. When the observation graph has
been successfully deployed, the request is “ENFORCED”. For any enforced request, iQAS
continuously monitors the QoO level of observations that are being served to consumers.
If the SLA associated to the request is violated, iQAS tries to adjust QoO level by deploying
a QoO Pipeline (structural reconfiguration): at this point the request is being “HEALED”. A
request should stay in this state for an adjustable time in order to see the effect of the deployed
remedy. If the SLA is met, the request goes back in “ENFORCED” state. Finally, if the maximum
number of attempts to heal a request has been reached and that the SLA level is GUARANTEED,
the request is decommissioned and its state is updated to “REMOVED”. A request may be
healed several consecutive times by trying different customizable parameters for the QoO
pipeline (behavioral reconfiguration). Please note that, in order to provide better feedback

100

MAPEKMsg

Timestamp creationDate
EntityMAPEK about

ActionMsg

ActionMAPEK action
...

RFCMsg

RFCMAPEK rfc
...

SymptomMsg

SymptomMAPEK symptom
...

ActionMsgKafka

String getKafkaTopicID()

ActionMsgPipeline

ObservationLevel getAskedObsLevel()
IPipeline getPipelineToEnforce()
Set<String> getTopicsToPullFrom()
String getTopicToPublish()
String getAssociatedRequest_id()
String getConstructedFromRequest()
int getMaxLevelDepth()

ActionMAPEK

APPLY
CREATE
RESET
DELETE

EntityMAPEK

REQUEST
PIPELINE
OBS_RATE
SENSOR
KAFKA_TOPIC

RFCMAPEK

CREATE
UPDATE
REMOVE
HEAL
RESET

SymptomMAPEK

NEW
UPDATED
REMOVED
TOO_HIGH
TOO_LOW
CONNECTION_REPORT

ObservationLevel

RAW_DATA
INFORMATION
KNOWLEDGE

Figure 4.8 – Class diagram for MAPE-K internal messages (simplified version)

to its consumers, the iQAS platform still allows them to retrieve details on requests that have
been either REJECTED or REMOVED.

4.5.4 Discussion

This section has presented three specific models regarding observations, pipeline processing
and system adaptation within iQAS. We used these PSMs at design phase to figure out concrete
implementations that fulfill key abstractions from our generic framework. Inheritance and
object-oriented programming have been used to define several observation granularity levels
with relationships to each other. We enabled QoO characterization by proposing three QoO
attributes that use the available observation fields. We implemented pipeline processing by
relying on both Akka Streams API and Kafka topics to play the role of intermediary buffers.
Finally, we proposed an actor hierarchy for the MAPE-K loop able to enforce different adapta-
tion strategies through the exchange of well-defined internal messages and multiple states for
observation requests. Armed with these actionable “building blocks”, we then developed a
first release of the iQAS platform. Next section depicts the iQAS ecosystem and describes the
behavior of the iQAS platform when providing system adaptation.

4.6 Implementation

Without going into too much detail, it seemed important to us to present some aspects of iQAS
behavior (i.e., how we concretely implement iQAS logic). In particular, we wanted to present
the iQAS ecosystem and processes occurring behind the scenes 1) when iQAS handles new
observation requests and 2) when iQAS provides system adaptation.

101

CREATED SUBMITTED

do / construct and deploy observation graph

ENFORCED

do / monitor QoO level

REJECTED

HEALED

do / wait to see heal effect

REMOVED

[request format OK]
/ create request object

[found virtual sensors
for topic-location]

[observation graph deployed][no virtual sensors
found for topic-location]

QoO level NOK
[SLA is violated

and remedy exists]
/ deploy QoO Pipeline
/ reset max attempts

QoO level OK or
(max attempts reached and
SLA level == BEST_EFFORT)

QoO level NOK
[max attempts reached and
SLA level == GUARANTEED]

/ stop Execute actors
/ delete Kafka topics

deletion from user or
(SLA is violated and

remedy does not exist and
SLA level == GUARANTEED)

/ stop Execute actors
/ delete Kafka topics

QoO level NOK
[max attempts not reached]
/ try other cutomiz. params
/ increments max attempts

Figure 4.9 – State diagram of an observation request within iQAS

4.6.1 The iQAS Ecosystem

Throughout the implementation of iQAS, we needed to regularly test the proper functioning
of the different features that we were implementing. This reason encouraged us to develop
two Docker23 container images to emulate several sensors and applications. We chose to use
the Docker virtualization for its great modularity and reusability: once a Docker image has
been defined and built, it is easy to deploy several containers (instances) that may accept
custom parameters at runtime. Besides, since virtualization is performed at application level,
containers are less resource demanding than common Virtual Machines.

Figure 4.10 shows the way we organized the different components and packages for the
entire iQAS ecosystem.

23https://www.docker.com

102

https://www.docker.com

Docker images

iQAS platform

mapek

database

server

pipelines kafka

«image»
VirtualSensorContainer

«image»
VirtualApplicationConsumer

«actor»
AutonomicManager

«actor»
Monitor

«actor»
Plan

«actor»
Analyze

«actor»
Execute

«component»
MongoController

«component»
FusekiController

«actor»
APIGateway

«component»
RESTServer

«actor»
PipelineWatcher

«actor»
KafkaAdmin

API

Figure 4.10 – Component diagram of the iQAS ecosystem

iQAS platform The server package contains a RESTServer component that is connected
to an APIGateway actor. The role of the APIGateway actor is to translate received HTTP
requests (e.g., GET, POST, DELETE) into understandable messages for the AutonomicManager
actor. The mapek package contains all previously mentioned actors that, all together, form the
MAPE loop. Regarding the Knowledge base, it is implemented by the database package, which
provides two controllers to interact either with Fuseki triple store (for ontologies) or with
MongoDB (for “cold storage”). All components from the mapek package regularly interact with
the ones from the database package, achieving the MAPE-K loop. Finally, the pipelines and
kafka package provide utilities for the proper functioning of the MAPE loop. On the one hand,
the KafkaAdmin actor performs on-demand actions regarding Kafka topic (creation, reset,
deletion) while the PipelineWatcher performs continuous discovery of new QoO Pipelines
from disk. To achieve this task, we rely on Java reflection and dynamic class (re)loading. By
continuously scanning the content of a resource directory, the PipelineWatcher is able to
load new pipelines at runtime, without requiring to restart the iQAS platform. Since these
pipelines should implement the IPipeline interface, the iQAS platform is then able to call the

103

getPipelineGraph() method to enforce them.

Docker images A Virtual Sensor Container (VSC) is a Docker image that allows us to create
virtual sensors that may generate observations: 1) at random, 2) from log file or 3) by first
retrieving them from other observation sources (such as the Web) as a transparent proxy.
VSCs allow to quickly deploy several virtual sensors that publish their observations into Kafka
source topics. A VSC also exposes APIs to interact with it and modify its individual behavior at
runtime, which may be particularly useful to emulate SANETs. Please note that a VSC is fully
customizable as developers can specify its different capabilities (sensing rate, URL to publish,
etc.) at build time.

A Virtual Application Consumer (VAC) is a Docker image that allows us to create “fake
consumers” that submit observation requests to iQAS and then subscribe to their assigned
Kafka sink topics. For each observation that it retrieves, a VAC reports back the perceived QoO
to the iQAS platform in real-time.

4.6.2 Handling New Observation Requests

The enforcement of a new observation request involves many components within the iQAS
platform. At first glance, this process seems to be quite complex. However, it clearly shows
our implementation efforts for achieving a true separation of concerns. In order to make the
link with the different sequence diagrams (Figures 4.11 and 4.12), we numbered the different
interactions between entities (from 1 to 28). For this example, we assume that the observation
request does not contain additional QoO constraints and, therefore, does not require further
QoO-based adaptation.

Let us imagine an application that submits a malformed SLA to our iQAS platform (1).
The RESTServer will return a “400 Bad Request” HTTP response and the request will not be
forwarded any further (2). In case of a well-formed SLA (3), the RESTServer generates an
unique request identifier and forward the request to the APIGateway (5). The RESTServer
also informs the application that its request is going to be enforced with a “200 OK response”
containing a JSON request summary (4). This summary includes the unique request ID so
that the application can track the enforcement of its request. Moreover, this summary also
gives the name of the future Kafka sink topic that will be used for delivering observations
that will meet this given request. The APIGateway inserts this request in MongoDB (6-7) and
informs the AutonomicManager that a new request should be created (8). The Autonomic-
Manager queries the ontology triple store by asking the FusekiController to perform inference
in order to find a list of virtual sensors that meet the topic/location fields of the SLA (9-10).
If no sensor has been found, the request is “REJECTED”, otherwise its state is changed to
“SUBMITTED” (11-12). Then, the AutonomicManager forwards this request with its updated
state to the Monitor (13). The Monitor may optionally ensure that at least one virtual sensor
is connected to iQAS (ping mechanism) before sending a symptom “NEW REQUEST” to the
Analyze actor (14). In order to enforce this new request, the Analyze actor first tries to retrieve
similar requests that already exist (15-18). Whether some exist or not, the Analyze actor builds
an “observation graph” that contains all required pipelines and Kafka topics that need to be

104

Application RESTServer APIGateway
Mongo

Controller
Autonomic
Manager

1 POST Request

2 400 Bad Request

3 POST Request

Unique request_id generation

4
200 OK
JSON response
(Request summary)

5 POST Request

6 Request insertion

7

opt [Request has been inserted]

8 Request CREATED

(a) Steps 1 to 8

(b) Steps 8 to 14

Figure 4.11 – Sequence diagrams for the enforcement of a new observation request (steps 1 to
14)

105

Figure 4.12 – Sequence diagram for the enforcement of a new observation request (steps 14 to 28)

106

created to correctly enforce the new request. Then, it sends this observation graph into a
RFC “CREATE REQUEST” message to the Plan actor (19). The Plan actor first creates the
necessary Kafka topics by sending “CREATE TOPIC” actions to the KafkaAdmin actor (20-21).
Then, it retrieves the different pipeline objects that implements IPipeline interface from the
PipelineWatcher actor (22-23). Each pipeline is then deployed in a separate Execute actor. We
remind the reader that an observation graph always starts with an IngestPipeline (24) and ends
with an OutputPipeline (26). An IngestPipeline should be registered to the Monitor actor in
order to be able to later perform QoO-based adaptation (25). Once the observation graph has
been successfully deployed, the Plan actor updates the request’s state to “ENFORCED” (27-28).
At this stage, observations will start to flow from sensors to the Kafka sink topic assigned to
the application. By subscribing to this topic, the application will be able to start receiving
observations that meet its needs.

4.6.3 Providing System Adaptation

iQAS provides QoO-based adaptation feature in a “lazy manner”: since QoO may evolve over
time, QoO constraints are monitored by iQAS once the request has been normally enforced.
This reactive way of doing avoids to deploy unnecessary QoO mechanisms when the basic
observation graph already meets SLA.

QoO-based Adaptation So far, we only envisioned requests without QoO constraints that
did not require further adaptation from iQAS once they were enforced. Returning back to the
example introduced in Section 4.6.2, we now imagine that the submitted SLA contained some
QoO constraints. Figures 4.13, 4.14 and 4.15 show the main steps of a QoO-based adaptation
in situations where a request needs to be “healed” (i.e., its QoO level needs to be adjusted).

Let us consider an enforced request with QoO constraints and a guaranteed SLA level.
Once deployed, the IngestPipeline and OutputPipeline regularly report some QoO metrics
regarding the observations currently delivered to consumers. Thus, the IngestPipeline reports
information regarding the observation rate of virtual sensors (1) while the OutputPipeline
may report all QoO attributes including observation accuracy, freshness and observation
rate for instance (2). In order to ensure scalability and not to overwhelm the Monitor actor,
only one report is sent every “tick” message (4-5). The duration between two tick messages
can be adjusted into the iQAS configuration file. From the received reports, the Monitor
actor may emit symptoms if the QoO level does not meet the request SLA, and send them
to the Analyze actor (3 and 6). The Analyze actor retains received symptoms for a certain
time. Periodically, it scans its local history to check if the maximum number of symptoms has
been reached for some enforced requests. If the maximum number of symptoms have been
reached for a request (e.g., 5 symptoms “TOO_LOW OBS_RATE”), the Analyze actor queries the
FusekiController in order to find an appropriate remedy (7-8). This process involves ontology
reasoning and inference. By using the QoOnto ontology, the Analyze actor is able to retrieve
some qoo:QoOPipeline candidates that may be used to adjust specific qoo:QoOAttributes,
which may heal the request. If no remedy has previously been tried, iQAS should perform a
structural reconfiguration (9-14) by deploying one QoO Pipeline from matching candidates. If

107

Monitor Analyze
«IngestPipeline»

Execute_1
«OutputPipeline»

Execute_3

ENFORCED Request with QoO constraints
and SLA level == GUARANTEED

loop [on "Tick" message received]

1 ObsRateReport message

2 QoOReport message

opt [if nb_events_before_symptom reached]

3
Symptom TOO_LOW ATTR /
Symptom TOO_HIGH ATTR

4
Schedule next
"Tick" message

5
Schedule next
"Tick" message

Figure 4.13 – Sequence diagram for the healing of an enforced observation request (steps 1 to
5)

a remedy has already been tried, iQAS should perform a behavioral reconfiguration (15-16),
which does not imply to deploy additional QoO Pipelines. In case of no remedy being found,
the request may be removed if the maximum number of retries has already been reached (17).

Structural reconfiguration corresponds to the deployment of an additional QoO Pipeline
just before the OutputPipeline of an already enforced request (14). Since this process involves
an update of the observation graph, the Plan actor should also perform an update of already
deployed pipelines (12-13).

Behavioral reconfiguration corresponds to a change of parameters (qoo:QoOCustomizable-
Parameter) for a running QoO Pipeline. Once the Analyze actors has determined the new
values for the different parameters of a QoO Pipeline (by performing ontology inference and
basic reasoning), it may directly send the configuration to use to the corresponding Execute
actor (16).

No matter what kind of reconfiguration is performed, the MAPE-K loop should always
pause for a certain time after deploying or updating a QoO Pipeline. This is particularly useful
to avoid oscillations between “HEALED” and “ENFORCED” request states. This adjustable
timer allows iQAS to assess the suitability of the deployed QoO Pipeline and its configuration
in a steady state. Finally, each time that iQAS performs adaptation, it updates the different
request states accordingly (18-19).

108

Figure 4.14 – Sequence diagram for the healing of an enforced observation request (steps 6 to 19)

109

Figure 4.15 – Sequence diagram for the healing of an enforced observation request (zoom
steps 9 to 14 and 15 to 16)

Resource-based Adaptation For each registered sensor in the ontology triple store, iQAS can
regularly check if its iot-lite:Service URI is currently reachable (by using a ping-like mechanism
with timeouts). This task is performed by the Monitor actor, which can emit symptoms “NEW
CONNECTION_REPORT” to other MAPE-K loop processes. A connection report contains the
last observed state (connected, disconnected) of all virtual sensors registered. This feature
allows iQAS to be more consistent by verifying that every registered sensor is actually deployed
and working.

4.6.4 Discussion

This section has presented the iQAS ecosystem as well as the concrete fulfillment of two
use cases from a platform perspective (handling new observation requests and providing
system adaptation). By providing a thorough description of iQAS behavior (with the help of
several UML sequence and state diagrams), we showed that our prototype provides a concrete

110

and actionable implementation of the key abstractions presented in our generic framework.
We were especially attentive to system adaptation as we identified it as an uncommon, yet
crucial feature for Sensor Webs. To our knowledge, iQAS is one of the few solutions able to
autonomously adapt its behavior based on both the available resources (sensors, pipelines)
and the QoO provided to each of its consumers.

Next section adopts a more practical perspective, describing how iQAS may be used and
deployed.

4.7 Usage and Deployment

In this last section, we go through final remarks regarding our QASWS prototype. Putting
themselves into the shoes of users, we describe how they may configure, interact but also
extend iQAS. Lastly, we provide a discussion on possible deployments for the platform that
can be helpful for developers or administrators.

4.7.1 Configuring iQAS

The iQAS platform may be configured by editing several configuration files before launch.
Within these files, administrators may set parameters for the API endpoints, the directory
to watch for QoO Pipelines, the MongoDB database, the Kafka message broker, the MAPE-K
loop and the Jena ontology triple store. Once set, these different settings are not intended
to change over time. On the contrary, iQAS provides dynamic discovery of virtual sensors
and QoO Pipelines at runtime (plug-and-play feature). In order to enable this feature, ad-
ministrators must update the ontology triple store to reflect the different sensors and QoO
Pipelines available. Therefore, it is the responsibility of the administrators to ensure that all
resources (VSCs and QoO Pipelines) are correctly described in order to further be discovered
and used by the platform.

4.7.2 Interacting with iQAS

Depending on observation consumers, they may interact with the iQAS platform either by
using:

RESTful API and endpoints iQAS exposes a simple but powerful RESTful API that allows to
manage the life cycle (creation, deletion) of the different iQAS entities (requests, sensors, QoO
Pipelines, etc.). A RESTful API is characterized by the use of the different HTTP verbs (GET,
POST, PUT, PATCH, DELETE) for sending an HTTP request (with optional payload) to a specific
URL endpoint. The combination verb-endpoint specifies the wanted operation (e.g., GET
/sensors) while the payload should give some parameters for the fulfillment of the operation
asked. To easily be used by new stakeholders, an API should provide adequate documentation.

Among others, iQAS API allows applications (and therefore VACs) to automatically sub-
mit observation requests, check request states and subscribe to the assigned Kafka topics.
iQAS documentation provides extended description of the different operations that can be

111

1 {
2 " application_id " : " weatherForecast " ,
3 " location " : "Toulouse" ,
4 " topic " : "temperature" ,
5 " obs_level " : "INFORMATION" ,
6 "qoo" : {
7 " s l a _ l e v e l " : "GUARANTEED" ,
8 " interested_in " : ["OBS_RATE" , "OBS_ACCURACY"] ,
9 " additional_params " : {

10 "obsRate_min" : "3/ s " ,
11 "age_max" : "150"
12 }
13 }
14 }

Listing 4.2 – Example of one iQAS SLA with QoO constraints

performed using the API. Listing 4.2 shows an example of JSON payload that can be embedded
to submit a new observation request (POST /request). For now, our iQAS prototype only
accepts observation requests in the form of key/value JSON parameters. However, the API
Gateway of our iQAS platform could easily be extended to also accept semantic queries (Knowl-
edge queries) and sensor-specific queries (Raw Data queries). In this way, we could infer what
observation level a consumer is asking for by processing its request, possibly with the help of
several Autonomic Managers as indicated in our generic framework.

Graphical User Interface We designed and developed the web-based GUI of iQAS based on
Material Design guidelines24. Promoted by Google, Material Design is “a unified system that
combines theory, resources, and tools for crafting digital experiences”. Figure 4.16 shows three
screenshots of the web-based GUI for iQAS. We chose to use material components in order to
provide a responsive and unified user experience regardless of the device (desktop computer,
tablet, mobile phone) used to browse the iQAS GUI. We designed each web page in a way not
to bother the user with unnecessary interactions so that he/she can maximize the use of the
iQAS platform. Using the GUI, a user may perform the same actions as through the API in a
more intuitive way (e.g., request submission shown in Figure 4.16b) but may also have access
to additional features such as QoO monitoring (shown in Figure 4.16c).

As previously mentioned all along this chapter, final iQAS consumers should subscribe
to Kafka topics (called “sink topics”) in order to retrieve SLA-compliant observations that
correspond to their iQAS requests. This choice has mainly been made given the large number
of clients that have been developed for Kafka in several programming languages. We believe
that such a development choice regarding observation consumption enhances iQAS inter-
operability and integration with third-party software. As a drawback, it can introduce some
additional latency between the time when an observation is made available and the time
when it is effectively consumed by final Kafka clients or applications. Once a request has been

24https://material.io

112

https://material.io

(a) iQAS homepage

(b) Submission of a new request (c) QoO monitoring

Figure 4.16 – Screenshots of iQAS web-based GUI

enforced within iQAS, we advise its final consumer(s) to continuously poll the assigned Kafka
topic in order to retrieve observations as soon as they are made available by the platform.
This will limit the end-to-end observation latency and will ensure that QoO characterization
performed by iQAS is still relevant when observations are consumed by final consumers.

113

1 /**
2 * CustomPipeline i s a QoO pipeline that can be used by iQAS to adjust the QoO l e v e l for

a request . I t simply output nb_copies r e p l i c a t e s for each incoming observation .
3 */
4 public class CustomPipeline extends AbstractPipeline implements IPipel ine {
5 private Graph runnableGraph = null ;
6

7 public CustomPipeline () {
8 super ("Custom Pipeline " , "CustomPipeline" , true) ;
9 addSupportedOperator (NONE) ;

10 setParameter ("nb_copies" , Str ing . valueOf (1) , true) ;
11 }
12

13 @Override
14 public Graph<FlowShape<ConsumerRecord<>, ProducerRecord <>>, Material izer >

getPipelineGraph () {
15 runnableGraph = GraphDSL . create (builder −> {
16 // . . . Definit ion of the graph l o g i c . . .
17 return new FlowShape < > (. . .) ;
18 }) ;
19 return runnableGraph ;
20 }
21

22 @Override
23 public String getPipelineID () {
24 return getClass () . getSimpleName () ;
25 }
26 }

Listing 4.3 – Definition of the QoO pipeline “CustomPipeline”

4.7.3 QoO Pipeline Development Walk-through

In this section, we show how to concretely develop a QoO Pipeline for the iQAS platform.
We chose to present the development of a simple remedy call “CustomPipeline”, which may
be used to heal an observation request on certain conditions. The CustomPipeline is a QoO
Pipeline that processes Raw Data observations and that accepts one customizable parame-
ter (nb_copies). For each incoming observation, it outputs nb_copies identical copies of the
same observation. This replication may improve observation rate by increasing the number
of effectively received observations by consumers. Please note that this QoO Mechanism is
different from Caching as it requires to regularly receive observations from sensors.

Listing 4.3 presents the Java class associated to the CustomPipeline QoO Pipeline. It should
be noted that domain-specific experts should indicate the different pipeline details within
the constructor method (lines 7-11). Here, we specified a default value of 1 for nb_copies
that corresponds to a simple observation forwarding (i.e., no replication). Also, experts should
override the getPipelineGraph() and getPipelineID() methods. The getPipelineGraph() method
describes the observation Graph (i.e., the QoO Pipeline) that is composed of several Flow-
Shapes (i.e., QoO Mechanisms). Listing 4.4 details the graph logic. CustomPipeline is composed

114

of three FlowShapes.

1 /**
2 * Definit ion of the graph l o g i c for CustomPipeline
3 */
4 private Graph runnableGraph = GraphDSL . create (builder −> {
5

6 f i n a l FlowShape<ConsumerRecord , RawData> graphStage1 =
7 builder . add(Flow . of (ConsumerRecord . class) .map(r −> {
8 JSONObject sensorDataObject = new JSONObject (r . value () . toStr ing ()) ;
9 return new RawData(

10 sensorDataObject . getStr ing (" date ") ,
11 sensorDataObject . getStr ing (" value ") ,
12 sensorDataObject . getStr ing ("producer") ,
13 sensorDataObject . getStr ing ("timestamps")) ;
14 })
15) ;
16

17 f i n a l FlowShape<RawData , RawData> graphStage2 = builder . add(
18 new CloneSameValueGS<RawData>(
19 Integer . valueOf (getParams () . get ("nb_copies")))
20) ;
21

22 f i n a l FlowShape<RawData , ProducerRecord> graphStage3 =
23 builder . add(Flow . of (RawData . class) .map(r −> {
24 ObjectMapper mapper = new ObjectMapper () ;
25 mapper . enable (Ser ia l izat ionFeature .INDENT_OUTPUT) ;
26 return new ProducerRecord<byte [] , String >(getTopicToPublish () , mapper .

writeValueAsString (r)) ;
27 })
28) ;
29

30 builder . from (graphStage1 . out ())
31 . v ia (graphStage2)
32 . t o I n l e t (graphStage3 . in ()) ;
33

34 return new FlowShape<>(graphStage1 . in () ,
35 graphStage3 . out ()) ;
36 }) ;

Listing 4.4 – Definition of the graph logic for the “CustomPipeline” QoO Pipeline

First, graphStage1 flow shape converts Kafka consumer records into Raw Data observa-
tions (lines 6-15). Each record is mapped to a JSON object, which is then used to retrieve the
date, value, producer and timestamps attributes required to construct a new RawData object.
As expected, the signature of graphStage1 flow shape is <ConsumerRecord, RawData>. Second,
graphStage2 flow shape performs the observation replication (lines 17-20). Each record is
duplicated nb_copies times, with the help of a custom CloneSameValueGS method that we will
not detail here for brevity. This mechanism is the one that gives its special behavior to the
CustomPipeline. The signature of graphStage2 flow shape is <RawData, RawData>. Finally,
the last flow shape is graphStage3 that performs the reverse operation of graphStage1. Thus,
this flow shape converts a RawData object back to a Kafka ProducerRecord (lines 22-28).

115

1 {
2 "@id" : "qoo : iQAS" ,
3 "@type" : " ssn : Platform " ,
4 " ssn : attachedSystem" : [. . .] ,
5 "qoo : considers " : [
6 {
7 "@id" : "qoo :OBS_ACCURACY" ,
8 "@type" : "qoo : QoOAttribute " ,
9 "qoo : shouldBe" : "HIGH"

10 } ,
11 {
12 "@id" : "qoo :OBS_FRESHNESS" ,
13 "@type" : "qoo : QoOAttribute " ,
14 "qoo : shouldBe" : "LOW"
15 } ,
16 {
17 "@id" : "qoo : OBS_RATE" ,
18 "@type" : "qoo : QoOAttribute " ,
19 "qoo : shouldBe" : "HIGH"
20 }
21] ,
22 "qoo : provides " : [
23 {
24 "@id" : "qoo : CustomPipeline" ,
25 "@type" : "qoo : QoOPipeline" ,
26 "qoo : allowsToSet " : {
27 "@id" : "qoo : nb_copies" ,
28 "@type" : "qoo : QoOCustomizableParameter" ,
29 "qoo : documentation" : "A s t r i n g (integer) that indicates how many copies should

be made and emitted each time that an observation a r r i v e s " ,
30 "qoo : paramType" : " Integer " ,
31 "qoo : paramMinValue" : "0" ,
32 "qoo : paramMaxValue" : "+INF" ,
33 "qoo : paramInitialValue " : "1" ,
34 "qoo : has" : [
35 {
36 "@id" : "qoo : CustomPipeline_nb_copies_effect_1" ,
37 "@type" : "qoo : QoOEffect" ,
38 "qoo : paramVariation " : "HIGH" ,
39 "qoo : qooAttributeVariation " : "HIGH" ,
40 "qoo : impacts" : { "@id" : "qoo : OBS_RATE" }
41 } ,
42 {
43 "@id" : "qoo : CustomPipeline_nb_copies_effect_2" ,
44 "@type" : "qoo : QoOEffect" ,
45 "qoo : paramVariation " : "CONSTANT" ,
46 "qoo : qooAttributeVariation " : "CONSTANT" ,
47 "qoo : impacts" : { "@id" : "qoo : OBS_RATE" }
48 }
49]
50 }
51 }
52]
53 }

Listing 4.5 – Semantic description of the QoO Pipeline “CustomPipeline” using the QoOnto
ontology

116

Once defined, the different FlowShapes are linked to form an observation Graph (lines
30-32). Finally, the method getPipelineGraph() should return the input and output ports, which
are graphStage1.in() and graphStage3.out() in our example (lines 34-35). As an additional step,
we compiled the class CustomPipeline into Java byte code. Then, we copied the byte code
file (.class extension) to the QoO Pipelines directory of iQAS.

Finally, we performed an update of the QoOnto ontology through the Apache Fuseki
interface in order to register the CustomPipeline into the iQAS platform. Listing 4.5 shows
the JSON-LD file that we uploaded into Fuseki. It declares the three QoO attributes for the
iQAS platform, alongside with their optimal value (HIGH, LOW). It also describes the Custom-
Pipeline and its parameter called nb_copies. We defined two qoo:QoOEffect for this parameter:

• If we increase the value of the nb_copies parameter, this is likely to also increase the
observation rate for the healed request (qoo:CustomPipeline_nb_copies_effect_1);

• If we set the nb_copies parameter to a certain value, the observation rate is not likely to
change due to the QoO Pipeline (qoo:CustomPipeline_nb_copies_effect_2).

Semantic descriptions of QoO Pipelines that are added to iQAS are essential. In this way,
the service offered by a QoO Pipeline is characterized. Thereafter, by using reasoning and
ontology inference, the platform will be able to select appropriate remedies that are the most
suitable in order to heal an observation request.

4.7.4 Discussion on Possible iQAS Deployments

When developing iQAS, we followed the basic principle of “deploying locally before moving to
the Cloud” as specified by the guidelines from our generic framework. In the end, due to a lack
of time, we only performed a local deployment. Nevertheless, we are quite confident that iQAS
can easily be deployed in a microservices fashion subject to only some minor code changes.
Quite popular these days, microservices architecture refer to “Cloud-native architectures that
aim to realize software systems as a package of small services” [143]. It has been shown that
such architectures facilitate distributed and Cloud-based deployments. Indeed, both these
deployments generally require to “break” the different components/actors across several
instances, whether they are physical or virtualized.

We anticipated this separation into small services 1) by focusing on a strong separation of
concerns and 2) by making appropriate implementation choices. For instance, all third-party
software used by iQAS (Apache Kafka, Apache Jena and Fuseki, MongoDB) can be deployed
in a distributed fashion to improve scalability. Regarding iQAS, the Akka toolkit provides
actor transparency, allowing to dispatch actors across several VMs/containers/instances. The
Akka toolkit also provides abstraction for message sending and delivery, which means that
no important code modifications will be needed in order to send messages to remote actors.
Behind the scenes, messages will be encapsulated into UDP/TCP datagrams and will be
exchanged through the network, though.

Finally, we will see in the next chapter that iQAS performances are already more than
acceptable for a first prototype deployed locally.

117

4.8 Summary of the Chapter

This chapter has presented the second contribution of this thesis, which is a fully-functional
QASWS prototype. With this contribution, our aim was to concretely present an instantiation
example of a QASWS solution developed from scratch with our generic framework for QASWS.

After having motivated the need for a concrete QASWS solution, we presented the dif-
ferent development steps and features of an integration platform for QoO assessment as a
Service (iQAS). To that end, we explained the methodology used to instantiate our generic
framework for QASWS. This process required us to make several implementation choices that
were not covered by our generic framework. In particular, we described and justified main
architectural and technological choices that we made for iQAS with respect to the QASWS
vision. After having derived some use cases and specific requirements more representative
of a concrete QASWS solution, we successively went through iQAS design, implementation,
deployment and usage.

As a result, iQAS aims to deliver high-quality observations to its consumers in an application-
specific way given some SLAs. It has been developed for being interoperable, extensible,
configurable and usable by stakeholders with different skills and interests. The next chapter
will be dedicated to the evaluation of the different iQAS features. It will also present sev-
eral deployment scenarios where QoO may help to provide a better overall service to end
consumers.

118

Chapter 5
iQAS Evaluation and Deployment
Scenarios

“Testing leads to failure, and failure leads to understanding.”

- Burt Rutan

Contents

5.1 Introduction . 120

5.2 Evaluation of iQAS Design . 120

5.2.1 Compliance with the QASWS Generic Framework 121

5.2.2 iQAS and the Internet of Everything . 122

5.3 Key Primary Indicators for iQAS Performance 123

5.3.1 iQAS Overhead . 126

5.3.2 iQAS Throughput . 130

5.3.3 iQAS Response Time . 133

5.4 Use Case 1: Smart City . 134

5.4.1 Motivation . 134

5.4.2 Scenario and Experimental Results . 135

5.4.3 Discussion . 135

5.5 Use Case 2: Web of Things . 137

5.5.1 Motivation . 137

5.5.2 Scenario and Experimental Results . 137

5.5.3 Discussion . 139

5.6 Use Case 3: Post-disaster Areas . 140

5.6.1 Motivation . 140

5.6.2 Opportunistic Networking and the HINT Network Emulator 141

119

5.6.3 Scenario and Experimental Results . 142

5.6.4 Discussion . 143

5.7 Evaluation of iQAS Specific Requirements . 145

5.7.1 Functional Requirements . 145

5.7.2 Non-functional Requirements . 146

5.7.3 Discussion . 149

5.8 Summary of the Chapter . 150

5.1 Introduction

The previous chapter has introduced the iQAS platform and the different implementation
choices that we made throughout its development (design, implementation, deployment and
usage). Among other things, we also presented the main features and the different ways to
interact with it. However, even if we explained the instantiation process reusing our generic
framework, the reader could have noticed that we did not performed any rigorous evaluation of
the iQAS platform so far. With this chapter, our objective is twofold: on the one hand, we want
to demonstrate that our final iQAS prototype does comply with the QASWS vision described
by our generic framework; on the other hand, we want to promote the QoO notion and the
need for characterizing observation quality within concrete use cases (QoO assessment as a
service).

This chapter is organized as follows. First, it presents a conceptual evaluation of iQAS,
explaining how its design is compliant with the QASWS vision and, from this basis, how the
platform can be positioned within the recent Internet of Everything (IoE) paradigm. Then,
it presents some Key Primary Indicators (KPIs) that we consider as representative of iQAS
performance. Three deployment scenarios are then presented to illustrate the importance of
considering QoO within sensor-based systems, especially for IoT platforms that may provide
additional services to their users. In order to show the ubiquitous character of QoO, we envision
pioneering but nonetheless concrete deployment scenarios. Thus, we first assess observation
accuracy for several stakeholders in a Smart City context. Then, we analyze the impact of the
integration of virtual sensors on observation rate. Finally, we investigate observation freshness
within post-disaster areas, where observations are collected in a peer-to-peer decentralized
way before being reported to iQAS. Each scenario gives us the opportunity to discuss additional
challenges and QoO-related perspectives specific to the use case. Finally, we conclude this
chapter by analyzing how iQAS meets its functional and non-functional specific requirements.

5.2 Evaluation of iQAS Design

In order to conceptually evaluate that the iQAS platform fulfills the QASWS vision, we check
its compliance against our QASWS Generic Framework. Then, similarly to the positioning
that we performed for our first contribution, we foresee possible reach and scope for our iQAS
prototype within the IoE paradigm.

120

5.2.1 Compliance with the QASWS Generic Framework

In order to evaluate the compliance regarding the QASWS vision, we first analyze if the design
principles of iQAS fit the general requirements previously introduced for the QASWS Generic
Framework. The mapping between the different use cases’ titles and the General Requirements
expressed in Section 3.2.3 is given in Table 5.1. This table shows that all iQAS use cases can
be mapped to at least one general requirement (either functional or non-functional), which
means that no general requirement from the QASWS Generic Framework was left aside during
the definition of use cases of the iQAS platform. Of course, this first conceptual evaluation
does not guarantee that the iQAS features have later been correctly implemented in the final
prototype. However, it highlights the fact that the iQAS development has been performed
based on solid foundations.

In addition to this use cases analysis, Figure 5.1 shows the matching between the iQAS
platform and the Functional View of the QASWS Generic Framework. For the sake of clarity,
we add the main abstract components and layers as overlays to the exact same figure that we
previously used to introduce iQAS structure. Hence, the sensor layer is formed by both different
sensors (VSCs) and their corresponding Kafka topics that receive the observations. The Raw
Data layer is implemented by the Ingest pipelines, QoO pipelines and Heal pipelines, when
present. From this figure, it can also be noted that Output pipelines are responsible for the
conversion of Raw Data into the different observation levels specified in SLAs. Therefore, they
may be configured on-demand to implement Raw Data layer Information layer or Knowledge
layer. Similarly to the sensor layer, the application layer is formed by both final applications
and the Kafka sink topics. The Management & Adaptation layer is made up of the MAPE-K
adaptation control loop, its Knowledge base being constituted of both “cold storage” and the
ontology triple store. Finally, both the API and the GUI form the Adaptation API. Compared to
the API, iQAS GUI provides a user-friendlier interface to submit new observation requests or
retrieve feedback.

MAPE-K
loop

QoO
report

Obs.
rate

report

appli1_58d39df

temperature,
visibility,

humidity, etc.

appli1

Physical, Logical or Virtual
sensors

Ingest
pipeline #1

Ingest
pipeline #2

QoO Pipeline
#1

Ingest
pipeline #3

appli2

appli3

appli4

appli2_46d69df

appli3_95d39df

appli4_aad39df

Output
pipeline #1

Output
pipeline #3

Output
pipeline #4

Output
pipeline #2

iQAS
storage

Ontology
triple store

GUI

API

Heal Pipeline
#3

Application
layer

Raw Data
layer

Knowl
edge
layer

Sensor
layer

Adaptation API

Information
layer

Autonomic Manager
+ Knowledge Base

Figure 5.1 – Mapping between the QASWS Generic Framework and iQAS. This figure shows
how the platform design fits into the functional view of our generic framework.

121

iQAS Use Cases
QASWS General Requirements

Functional Non-Functional

Publish observations F1, F7 NF1, NF4
Subscribe to specific observations F2, F4 NF1, NF6

Monitor QoO level F6 -
Adapt QoO level F3 NF3

Enforce SLA F3 NF4, NF5
Retrieve info about the iQAS platform F8 -

Cancel observation request F2 NF1
Submit observation request F2 NF1

Reload QoO Pipelines - NF3
Manage sensors - NF7

Define QoO Pipelines - NF2
Define QoO attributes - NF9

Browse and query QoOnto ontology - NF9
Update QoOnto ontology - NF9

Find a suitable QoO Pipeline F5 NF3
Discover available sensors F1 NF7

Discover QoO Pipelines - NF8

Table 5.1 – Mapping between iQAS’ use cases and general requirements from the QASWS
Generic Framework

5.2.2 iQAS and the Internet of Everything

The Internet of Everything (IoE) is a relatively new term introduced by Cisco in an official
report dated 2013 [55]. Since then, Cisco created a website1 to promote the IoE paradigm and
track the latest advances and developments. According to Cisco, one can define IoE as “the
networked connection of people, process, data, and things”. Built upon the IoT that mainly
refers to the deployment and the interconnection of smarter communication-capable Things,
the IoE also considers societal impacts, risks and economic benefits of a more interconnected
World. We believe that this raising paradigm merits our attention for at least three main
reasons:

1. QoO considerations: the IoE is representative of the emergence of more and more data-
centric systems. It acknowledges the importance of data (and therefore data quality) by
considering data as a major element of the ecosystem, alongside with people, processes
and Things. We believe that this is a major disruption since data-related considerations
were often absent from the previous accepted IoT definitions. We also hope that this
change in perspective will attract more research into QoO field.

2. Business-oriented: unlike the IoT that has been mainly driven by technology, the IoE
should be driven by potential benefits that governments, organizations and citizens can
expect from technology. Based on the lessons learned from the IoT, numerous use cases

1http://ioeassessment.cisco.com

122

http://ioeassessment.cisco.com

have been identified and assessed in terms of potential benefits. For instance, Cisco’s
report predicts that IoE is “poised to generate 4.6 trillion dollars in Value at Stake for the
public sector over the next decade” [55]. Moreover, 69% are expected to be powered by
“citizen-centric connections” (i.e., person-to-person, machine-to-person or person-to-
machine interactions). This figure shows how important it is to also envision people
when studying the IoE.

3. Societal impact: last but not least, the IoE forecasts far-reaching changes that will
completely remodel our society, the way of life of many citizens as well as their habits.
Some research works like [10] have investigated the societal role that could be played by
the IoT. The IoE paradigm does not change the findings of these studies and may be used
to distinguish IoT-related technologies from their uses or implications. As they generally
consider many stakeholders with different interests and motivations (see Section 5.4),
Smart Cities offer good insights on what these societal transformations could look like.

To complete the conceptual evaluation of iQAS, we wanted to analyze the positioning of
the platform within the IoE. To this end, we reuse previous work of Knud Lasse Lueth [144]. In
particular, we found particularly helpful its disambiguation figure that presents relationships
between IoE and other paradigms. We reproduced and adapted this figure (see Figure 5.2) to
better explain iQAS positioning.

At first sight, the iQAS platform – as an integration platform that retrieves observation
from sensors – may first fall under the IoT paradigm. Indeed, it relies on a data-flow oriented
architecture that heavily borrows from IoT-related solutions, especially regarding the soft-
ware used (e.g., Apache Kafka for message broker, Docker containers for virtualization, etc.).
However, it also relies on many ingredients inherent to the Semantic Web (e.g., ontologies,
JSON-LD, RESTful API endpoints, etc.). Finally, our platform also aims to promote the need for
considering and adjusting QoO in data-centric systems to its different stakeholders, who may
have different skills and interests. We believe that all these characteristics make iQAS a unique
QASWS prototype, somewhere between the IoT, the WoT (see Section 5.5), the Internet and
the IoE paradigms. The reader will have noticed that Figure 5.2 mentions the terms “Industrial
Internet” and “Industry 4.0” for the first time in this manuscript. To go deeper into these
paradigms, we encourage the interested reader to refer to [144, 67].

5.3 Key Primary Indicators for iQAS Performance

iQAS has been deployed locally on a Mac Pro server 2013 with 3.7 GHz Quad-Core Intel Xeon E5
processor and 32 GB RAM. After some preliminary experiments, we have noticed that iQAS
performance could be highly impacted by some third-party software, and in particular by
Kafka configuration and JVM settings. As a result, when we refer to “iQAS performance” in the
following of this chapter, we refer to the performance of the whole iQAS ecosystem, with all
integration and configuration issues that third-party software may introduce.

We defined three Key Primary Indicators (KPIs) and we used them to adjust iQAS con-
figuration prior to performing the deployment scenarios. Since the use of Kafka topics as
intermediary buffers was a central implementation choice, we focused on the integration

123

Internet of Everything (IoE)

Bringing together people, process, data and Things to make networked
connections more relevant and valuable than ever before.

Internet of Things (IoT)

Physical objects are linked through wired and
wireless networks.

Industrial Internet

Integration of complex physical machinery with
networked sensors and software.

Machine to Machine (M2M)

Technologies that allow both wireless and wired
systems to communicate with each other devices of

the same type.

Common Internet Web of
Things
(WoT)

A set of

software
architectural

styles and
programming
patterns that

allow real-
world objects
to be part of

the World
Wide Web.

Industry 4.0

Beyond connectivity.
Takes idea of industrial

Internet further to a
computerization of the

manufacturing Industry.

Scope

Reach

Machines

Objects,
devices

People

World

Virtual World Physical World

iQAS positioning

Figure 5.2 – iQAS positioning within the Internet of Everything (Figure reproduced and adapted
from [144]).

between Akka and Kafka software as their configurations were the most likely to impact iQAS
performances and, therefore, QoO. In the end, the three KPIs that we have considered relate to
iQAS overhead (i.e., observation delay), iQAS throughput and iQAS response time. Please note
that our ultimate goal was not to achieve optimal performances but instead to understand
1) what configuration parameters should be carefully set for Kafka consumers and producers
and 2) what are the different trade-offs, if any.

As expected, we have found that latency lags bandwidth, which means that a non-negligible
trade-off exists between iQAS overhead and throughput [145, 146]. Please note that this find-
ing is consistent with the fact that message queues may improve bandwidth while increas-
ing latency (as formalized in Queuing Theory). Besides, in order to improve throughput,
Kafka clients (i.e., producers and consumers) may be configured to work with observation
batches instead of processing observations as soon as they arrive. To highlight the bandwidth-
latency trade-off, we specifically defined two different configurations (initial_config and
high_throughput_config) for Kafka clients within the Akka toolkit (see Table 5.2). The main
difference between these two configurations is the use of observation batching for the high_-
throughput_config one. Please note that these settings are widely used at runtime by all
pipelines (consumption from a topic, observation processing, publication to another topic).

iQAS overhead and iQAS throughput have been evaluated regarding both configurations.

124

Configurations

Parameter initial_config high_throughput_config

P
ro

d
u

ce
r batch.size 16384 100000

linger.ms 0 2
send.buffer.bytes 131072 −1 (use OS default)

receive.buffer.bytes 65536 −1 (use OS default)

C
o

n
su

m
er

send.buffer.bytes 102400 −1 (use OS default)
receive.buffer.bytes 32768 −1 (use OS default)

auto.commit.interval.ms 5000 10000
max.poll.records 500 50000

check.crcs true false
fetch.min.bytes 1 65536

Table 5.2 – Two different configurations for Kafka consumers/producers used by iQAS within
pipelines. For a description of the different parameters, please refer to the official Kafka
documentation.

Since it is less sensitive to Kafka clients’ configuration, iQAS response time was only evaluated
given the initial_config. For all experiments and deployment scenarios that we performed in
this chapter:

• We set a 3 GB Java heap for Apache Kafka (Java options -Xms3g -Xmx3g);

• Each Kafka topic was associated to 1 partition with a replication factor of 1 (no replica-
tion);

• We used the following Java options when running the iQAS platform: -server -d64
-Xms2048m -Xmx8192m -XX:+UseParallelOldGC;

• We directly ran the different VSCs and VACs as Python programs and not as Docker
containers to avoid additional overhead due to the Docker Virtual Machine (Mac OS X
deployment);

• When possible, we performed each experiment 5 times and we drew graphs by plotting
the mean and standard deviation (“error bars”) of each graph point.

For the sake of completeness, Table 5.3 also indicates the size of each Kafka message that
can be consumed by final VACs according to the observation level.

Observation level
Observation message size (in bytes)

Without QoO attributes With QoO attributes

Raw Data 192 254
Information 394 456
Knowledge 1640 3481

Table 5.3 – Individual message size within Kafka for the three observation levels

125

5.3.1 iQAS Overhead

The evaluation of iQAS overhead has been performed according to the experimental setup
presented in Figure 5.3.

appli1 sensor01

End-to-end delay

produced consumed

(a) Direct observation consumption without iQAS

appli1 sensor01

iQAS delay

End-to-end delay

produced iQAS_in iQAS_out consumed

(b) Observation consumption through iQAS

Figure 5.3 – Experimental setup for the evaluation of iQAS overhead

First, to emulate a scenario without iQAS (see Figure 5.3a), we connected a VSC to a
VAC through the mean of a Kafka topic. In average, we found that, with such setup, Raw
Data observations have a 2 milliseconds end-to-end (E2E) delay, which can be considered as
negligible. This value is compliant with a recent benchmark performed at LinkedIn [146] and
will be used as reference to analyze the overhead introduced by iQAS. Then, we evaluated iQAS
overhead by configuring a VAC to submit distinct observation requests (Raw Data without
QoO constraints, Raw Data with QoO constraints, etc.). All requests concerned temperature
measurements, which were produced by a single VSC with a sensing rate of 1 observation every
5 seconds. The VAC (appli1 in the Figure 5.3b) reported QoO to the platform for each received
observation. In particular, it was able to compute the E2E delay and the iQAS delay by using
the different timestamps embedded into observations and mentioned in the figure (produced,
iQAS_in, iQAS_out, consumed). Each experiment has been run for more than 4 minutes.

126

Figure 5.4 and Figure 5.5 present the results for initial_config and high_throughput_config
configurations, respectively. Due to reproducibility issues, please note that each sub-figure
is the representation of a single execution. However, each experiment has been run several
times to ensure proper overhead characterization.

With initial_config and without QoO constraints (Figures 5.4a, 5.4c and 5.4e), the average
E2E delay is about 5 milliseconds, regardless of the observation level asked. This is consistent
with the fact that the iQAS platform contributes to this delay to 2 milliseconds in average: if
we add the 2 milliseconds iQAS-specific delay to the 2 milliseconds E2E delay from the direct
consumption reference scenario, we roughly end up with the E2E delay for observations that
are consumed by the VAC through iQAS. Please note that these values are negligible and may
satisfy most of observation consumers, even the most demanding ones.

With initial_config and with QoO constraints (Figures 5.4b, 5.4d and 5.4f), we observe
a high variability for the iQAS delay. It is worth noting that most of the E2E delay is caused
by iQAS since the two lines are always close together. Therefore, no additional overhead is
introduced by the VSC that produces observations to source topic or the VAC that retrieves
observations from its assigned sink topic. The E2E delay remains below 100 milliseconds for
all observation granularity levels, with many changes of large amplitude between extreme
values. This behavior can be explained by the deployment of more pipelines, which translates
by a greater use of Kafka topics as intermediary buffers and represent as many possibilities to
increase observation latency.

With high_throughput_config and without QoO constraints (Figures 5.5a, 5.5c and 5.5e),
we observe significant E2E delays of about 600 milliseconds in average, regardless of the
observation level. These new values are the direct consequence of the new Kafka clients’
configuration (see Table 5.2), which introduces observation batching and minimum waiting
time (linger timer). As a result, the high_throughput_config increases iQAS throughput (see
next evaluation below) at the cost of observation freshness. For the three observation levels,
iQAS delay is between 300 and 400 milliseconds and it is sometimes completely negligible for
some observations (below 10 milliseconds). Since the iQAS_out timestamp is annotated by
the iQAS platform just before publishing observations to the assigned sink topic of the VAC, we
mainly ascribe the variability of the E2E delay to the behavior of the OutputPipeline associated
to the enforced request and not to the VAC behavior (unchanged configuration).

Finally, with high_throughput_config and with QoO constraints (Figures 5.5b, 5.5d and
5.5f), results are even more variable due to the bigger number of deployed pipelines and
intermediary Kafka topics. As expected, results are slightly higher than without QoO for
the same configuration. iQAS delay is comprised between 200 milliseconds and 1 second
while E2E delay can be up to 1.4 second. As already mentioned, such iQAS overhead directly
impacts QoO, and in particular the freshness of the observations effectively delivered to final
consumers.

This first evaluation of iQAS has shown that the platform overhead (observation delay)
was mainly dependent on Kafka clients’ configuration. This could be explained by the use
of clients within each deployed pipeline to consume/publish from/to Kafka topics, which
serve as many intermediary buffers. As foreseen in our preliminary analysis, QoO may be
impacted by the configuration of the Kafka clients as iQAS uses topics as intermediary buffers.

127

(a) Raw Data without QoO constraints (b) Raw Data with QoO constraints

(c) Information without QoO constraints (d) Information without QoO constraints

(e) Knowledge without QoO constraints (f) Knowledge without QoO constraints

Figure 5.4 – Experimental results for iQAS overhead with initial_config configuration

128

(a) Raw Data without QoO constraints (b) Raw Data with QoO constraints

(c) Information without QoO constraints (d) Information without QoO constraints

(e) Knowledge without QoO constraints (f) Knowledge without QoO constraints

Figure 5.5 – Experimental results for iQAS overhead with high_throughput_config configuration

In order to mitigate these side effects, we performed several experiments in order to figure
out what configuration parameters were the most important regarding the trade-off between

129

latency bandwidth. We ended up by defining two Kafka clients’ configurations to achieve
1) low overhead for initial_config and 2) high throughput for high_throughput_config. With
the initial_config configuration, the iQAS overhead is always below 100 milliseconds, which is
generally sufficient to meet consumer needs, even the most demanding ones.

5.3.2 iQAS Throughput

In order to evaluate the ability of iQAS to deliver a large number of observations per second (i.e.,
iQAS throughput), we reused and adapted some benchmark tools provided by the Apache
foundation and shipped with Kafka software. In particular:

ProducerPerformance tool was modified in order to be able to publish: 1) sensor tempera-
ture records and 2) “dummy observations” of fixed size (with padding) to emulate the
different observation levels (Raw Data, Information and Knowledge);

ConsumerPerformance tool has been reused to evaluate the average number of observations
by second that the iQAS platform could provide to its final consumers.

Then, to evaluate iQAS throughput against the two initial_config and high_throughput_-
config configurations, we adopted the following experimental protocol:

1. We deleted all Kafka topics and reset the iQAS platform;
2. We submitted a new observation request for temperature (for several observation levels,

with or without QoO constraints) and wrote down the assigned Kafka sink topic for
observation consumption;

3. We started the ProducerPerformance tool and generated 500000 temperature records
that were published as fast as possible to the temperature Kafka source topic;

4. Immediately after having started the production of temperature records, we ran the
ConsumerPerformance tool on the Kafka sink topic of the request and we waited until
the consumption of the 500000 observations was entirely done;

5. We ran each request 5 times in order to compute the mean and standard deviation (error)
for each scenario.

Figure 5.6 shows the different experimental results that we obtained. For reference, we
also evaluated observation throughput in a “direct Kafka consumption” scenario without
using iQAS according to the experimental setup presented in Figure 5.3a, where the sensor
is replaced by the ProducerPerformance tool and where the application is replaced by the
ConsumerPerformance tool. This reference scenario (see Figure 5.6a) shows that it is possible
to deliver up to 570000 Raw Data observations per second with a local Kafka deployment
without parallelism or replication. When it comes to Information or Knowledge consumption,
the ConsumerPerformance tool reports Kafka throughput of 300000 and 50000 observations
per second, respectively (see Figure 5.6a). Interestingly, we can note that our experimental
results are much higher than those presented in [141, 142], which is mainly due to an overall
enhancement of Kafka software over its different versions. Hence, a more recent benchmark
performed in 2014 shows that Kafka may achieve up to “2 million writes per second (on three
cheap machines)” [146], which is closer to the obtained results. The main difference between

130

the LinkedIn’s benchmark and our experiments lies in the fact that, in order to preserve delivery
order for observation streams, we do not consider any parallelism or replication.

(a) Without iQAS - direct Kafka consumption

(b) Through iQAS - initial_config (c) Through iQAS - high_throughput_config

Figure 5.6 – Experimental results for observation throughput (5 runs for each experiment)

Overall, we can notice that observation throughput decreases as message size increases,
which is compliant with basic principles of Queuing Theory. As a result, we observe a clear
difference between the consumption of Raw Data-Information and Knowledge observations.
This trend is noticeable for the direct Kafka consumption scenario (Figure 5.6a) but also when
observations are output by iQAS (Figures 5.6b and 5.6c). If we have a look to Kafka message
sizes presented in Table 5.3, we notice that Raw Data and Information observations are quite
small compared to Knowledge observations, which can be up to 10 times larger in comparison.
While the number of observations we can consume per second decreases as observations get
bigger, “the total byte throughput of real user data [may] increase as message get bigger” [146].
For instance, this behavior can be observed for iQAS throughput with initial_config without
QoO constraints: while Raw Data throughput is about 10000×192 = 1920000 bytes per second,
Knowledge throughput is about 2500×1640 = 4100000 bytes per second. In contrast, such
trend is not observable any longer for high_throughput_config due to the many changes in
Kafka clients’ configuration.

131

initial_config high_throughput_config

Without QoO With QoO Without QoO With QoO

RD I K RD I K RD I K RD I K

delay
(ms)

1.38 −5% +50% +1751% +776% +1226% 215.95 +55% +104% +140% +206% +221%

through-
put

(obs./s)

10023 +1% −75% −58% −59% −84% 32971 −1% −90% −76% −76% −94%

Table 5.4 – Summary of performance degradation for iQAS delay and iQAS throughput for each
request kind according to the two Kafka configurations. In order to compute percentages, the
Raw Data request without QoO is considered as the reference value for each configuration.
“RD” = Raw Data, “I” = Information, “K” = Knowledge.

As expected, iQAS throughput is lower than the direct Kafka consumption scenario. This
is perfectly normal considering additional pipelines that observations should pass through
before being consumed by the ProducerPerformance tool. For all scenarios involving QoO
constraints, we can note a throughput decrease that confirms that the deployment of more
pipelines tends to reduce iQAS throughput. In average, this decrease is of 50% for initial_config
and of 75% for high_throughput_config for Raw Data and Information. Returning to the main
iQAS trade-off, we note that the high_throughput_config significantly improves throughput
for small observations (Raw Data and Information). Compared to the initial_config, iQAS
throughput is improved by more than 330% for these small observation levels. However, the
change of configuration seems to have no effect on bigger observations such as Knowledge,
which are output by the iQAS platform at a pace of 2000 observations per second in average.

This second evaluation of iQAS has shown that it was possible to improve the platform
throughput at the cost of a greater overhead. It confirms the basic trade-off from Queuing
Theory between latency and throughput. Regarding Kafka clients, such trade-off can be tuned
by adjusting the size of observation batches and the time to form these batches for instance.
Due to their message sizes, the nature of delivered observations also impacts the throughput
that iQAS can achieve. Table 5.4 summarizes all performance degradations regarding both
iQAS delay and iQAS throughput for each request kind (Raw Data, Information, Knowledge;
with or without QoO constraints) according to the two Kafka configurations. Even if some
percentages may give the impression that iQAS only degrades observation consumption, we
must make no mistake and keep in mind that consumers benefit from using the platform
above all, especially by only receiving fit-to-use observations in a consumer-specific way.

Finally, in order to guarantee strict delivery order guarantees for observation streams, we
chose not to enable Kafka replication or parallelism. As a result, within iQAS, only two Kafka
clients (one producer and one consumer) can be deployed at the same time for a given topic
and a given request.

132

5.3.3 iQAS Response Time

We define “iQAS response time” as the time taken by the platform for enforcing a novel
observation request given a number of requests already enforced. Since this experiment is less
sensitive to Kafka clients’ configuration, we decided to perform it by using the initial_config
configuration only. In order to evaluate this KPI, we submitted several times the exact same
observation request to the iQAS platform. Before submitting a new request, we waited until
the previous one was completely enforced. We computed the response time by retrieving
the logs for each request and by performing a simple subtraction between two timestamps.
Figure 5.7 shows the results obtained. Each point represents the average iQAS response time
over 5 runs.

Figure 5.7 – Experimental results for iQAS response time (average time over 5 runs)

From the figure, it can be noted that the enforcement of the first observation request
always requires more time than others: while the first request requires between 325 and
375 milliseconds to be effectively enforced, further requests only require about 50 milliseconds
in average. Such a difference can be explained by the fact that the iQAS platform always
tries to reuse already deployed components when possible. Therefore, when no request is
enforced, any new incoming request triggers the deployment of several pipelines. On the
contrary, further requests can be built reusing the existing by only deploying few additional
pipelines, which allows saving time. Experimental results also show that requests with QoO
constraints take more time to be enforced than others. This behavior was expected given the
bigger number of pipelines to deploy for these requests. Finally, these results also show a
great scalability of the iQAS platform with regard to response time as the number of enforced

133

requests increases (O(1) complexity).
This last evaluation has shown that iQAS is a reactive platform, able to construct and deploy

a new observation graph in less of 400 ms for the first request. For further similar requests,
this response time is much smaller as the platform provides modularity and reusability. These
different features allow iQAS to guarantee a constant response time to enforce new observation
requests if similar ones already exist.

Let us now turn to three deployment scenarios that illustrate some concrete uses of the
iQAS platform.

5.4 Use Case 1: Smart City

5.4.1 Motivation

“Smart City” refers to a recent paradigm that has attracted the attention of both academia
and industry. Many definitions have been proposed to describe this concept, which “is being
known popularly but used all over the world with different names and in different circum-
stances” [147]. For instance, one recurrent definition tends to consider a Smart City as “a city
that monitors and integrates conditions of all of its critical infrastructures, including roads,
bridges, tunnels, rails, subways, airports, seaports, communications, water, power, even major
buildings, can better optimize its resources, plan its preventive maintenance activities, and
monitor security aspects while maximizing services to its citizens” [148]. We acknowledge this
definition for two main reasons: first it shows that many application domains (such as smart
homes, public transportation, smart medical treatment, etc.) can be considered within Smart
Cities, representing as many use cases for Sensor Webs and QoO [149]. Second, it describes
these cities as a subtle combination of technologies, humans and institutions, which is com-
pliant with most of the frameworks that have been proposed to conceptually define Smart
Cities [147, 150].

Amsterdam, Barcelona, Dublin, Madrid and Manchester are some examples of “working
definitions” of the Smart City concept. Each of these experiments strives to make the city
“smarter”, driving it to be more efficient, sustainable, equitable and livable. Due to the complex
issues to solve, many stakeholders with different skills and different interests often carry
Smart City management. Furthermore, the different high-value services (transportation
planning, heat wave alert, etc.) that a Smart City can provide to its stakeholders may vary
regarding many factors (sensor deployment, observation analytics, etc.). In parallel, the great
number of ontologies that have been developed for Smart Cities show a clear trend to provide
actionable Knowledge to their stakeholders2. As observation quality is a common issue in
Smart Cities [18], we advocate that such Knowledge should be derived from QoO-adjusted
observations, which motivate the use of QASWS in Smart Cities.

For this first deployment scenario, we focus on technology issues. In particular, we explore
how iQAS can be used to cope with systematical errors of physical sensors [151]. Consequently,
we analyze and discuss mainly the accuracy of received observations.

2http://smartcity.linkeddata.es

134

http://smartcity.linkeddata.es

5.4.2 Scenario and Experimental Results

For this first use case, let us consider two stakeholders: Matt, the first one, is a city employee in
charge of the sensor maintenance; Maggie is a meteorologist for a private weather forecast
company. Let us imagine that Matt is asked to check the good working of all visibility sensors
across the city. In parallel, Maggie is interested in collecting visibility measurements to release a
weather report for an upcoming airshow that will take place on the same day. In this case, both
stakeholders are interested in visibility for the same spatiotemporal context (current visibility
for the whole city), but with different QoO needs. As a domain-expert, Maggie wants to retrieve
accurate observations, which will help her to write her weather report and make accurate
forecasts. For physical sensors, this requirement mainly translates into selecting records
that have a consistent value regarding their sensor’s measurement range. Since visibility is a
distance measurement, Maggie specifies that she wants to retrieve positive observation values
only. Matt’s needs are different: even if he surely also knows that visibility sensors should only
output positive measurements, he wants to identify the defective ones in order to replace or
repair them. Therefore, he decides to submit a query with no specific thresholds. Please note
that he could also had limited the received values to the interval]−∞,0[to get measurements
produced by defective sensors only.

To emulate this Smart City use case, we created two VACs for our stakeholders Matt and
Maggie. Each VAC submitted a representative request to our iQAS platform. In response,
iQAS auto-configured itself by creating two observation pipelines, reusing the first pipeline
to construct the second one. Then, we created a VSC to emit observations corresponding
to a raw visibility dataset recorded in the city of Aarhus in Denmark3 from February 2014 to
June 2014 at the sensing rate of 2 measurements per second. This dataset was specifically
chosen since we were aware that it contained some systematic measurement errors (with
some values equal to −9999 kilometers). As soon as we started the VSC, observations started
to flow throughout iQAS and were delivered to the two VACs. While consuming the visibility
observations, the VACs reported to iQAS the QoO for the received observations, enabling
real-time visualization (see Figure 5.8 for the first 500 seconds of the simulation).

5.4.3 Discussion

As expected, Figure 5.8a shows several visibility values equal to −9999 kilometers, which
have been annotated as not accurate by the iQAS platform (0% for OBS_ACCURACY) as they
were outside the measurement range of a visibility sensor. In comparison, the QoO visual-
ization for Maggie the meteorologist contains accurate visibility observations only (OBS_-
ACCURACY = 100%) according to the iQAS platform.

The first lesson learned from this deployment scenario is that iQAS can significantly
improve QoO by deploying QoO Pipelines composed of various transformation functions or
QoO Mechanisms (such as Filtering for instance). The second lesson learned is that QoO needs
are best expressed by the final consumers who will consume observations. For instance, if iQAS
had automatically filtered inaccurate visibility observations, Matt could not have identified

3http://iot.ee.surrey.ac.uk:8080/datasets.html#weather

135

http://iot.ee.surrey.ac.uk:8080/datasets.html#weather

(a) QoO visualization for the maintenance request

(b) QoO visualization for the meteorologist request

Figure 5.8 – OBS_ACCURACY assessment for two different iQAS requests

and replaced faulty sensors. Since inaccurate observations may sometimes represent high-
quality observations and actually worth something for some stakeholders, we designed iQAS
to accept fully customizable SLAs, including the ones that normally refer to “unwanted”
observations. Thanks to these customizable SLAs, the iQAS platform may be able to determine

136

more accurately if an observation is of “good quality” or not.

5.5 Use Case 2: Web of Things

5.5.1 Motivation

The Web of Things (WoT) [152] is generally defined as a set of practices, architectures and
programming patterns used in order to expose sensors to the World Wide Web. For instance,
a real-world physical sensor that can be remotely accessed through the Internet using main
HTTP verbs (GET, POST, etc.) can be considered as being part of the WoT. As they are closely
linked, many research challenges raised by the IoE are also applicable to the WoT. For instance,
the fact that some predictions forecast more than 50 billion devices connected to the Internet
by 2050 shows that the WoT is and will continue to face some “Big Data issues” [153].

As this trend of exposing sensors to the Internet will only accelerate, integration needs
are becoming more relevant than ever. As a result, numerous integration platforms (such as
the IFTTT4 commercial platform for instance) have built their business model on the lack
of interoperability within the IoT/WoT. Most of these commercial platforms do not generate
high-value services themselves. Instead, they enable users to take advantage of the exposure of
some sensors over the Web to define their own custom scenarios, as if their Things were able to
“talk” to each other. To do so, they generally provide a limited number of connectors/adapters,
which may restrict the number of systems a user can interact with in some cases.

This second deployment scenario gives us the opportunity to study some QoO-related
challenges that can be raised by the integration of virtual sensors. Relying on iQAS, we analyze
and discuss the relevancy of considering QoO when it comes to systems of systems. In
particular, we focus on different considerations that can limit the observation rate of a virtual
sensor.

5.5.2 Scenario and Experimental Results

As a preliminary step, we created a free account on the OpenWeatherMap website5 to gain
access to the “current weather data” API provided. We only applied for a free plan that allows no
more than 60 API calls per minute. API documentation says that “current weather is frequently
updated based on global models and data from more than 40000 weather stations”.

In order to integrate this virtual sensor to iQAS, we developed a custom OpenWeatherMap
adapter that specifies the different methods of the AbstractAdapter Python class provided by a
VSC (see Listing 5.1). We defined the OpenWeatherMap adapter as a synchronous adapter that
retrieves the latest temperature for the city of London at a rate of 2 observations per second
through the OpenWeatherMap API. Then, we configured a new VSC by passing this new
adapter in parameter at build time and we registered it to the iQAS platform using the QoOnto
ontology. In the end, the VCS created can be seen as a proxy that retrieves observations from
a virtual sensor before performing data integration, by formatting observations according

4https://ifttt.com
5http://openweathermap.org/api

137

https://ifttt.com
http://openweathermap.org/api

to iQAS encodings. Finally, we submitted an iQAS request for temperature measurements
in the London area with a QoO constraint regarding OBS_RATE (guaranteed minimum of
2 observation per second) before subscribing to the assigned sink topic with a VAC.

1 class AbstractAdapter(object) :
2 " " "
3 AbstractAdapter c l a s s provided to build new adapters f o r VSCs
4 " " "
5 def __init__(self , max_call_by_minute , timeout , nb_max_retries) :
6 self . first_call_timestamp_window = None
7 self . counter_cal ls = 0
8 self . max_call_by_minute = max_call_by_minute
9 self . timeout = timeout

10 self . nb_max_retries = nb_max_retries
11

12 def i s _ a _ c a l l _ p o s s i b l e (self) :
13 if self . counter_cal ls + 1 < self . max_call_by_minute :
14 return True
15 elif TimeUtils . current_mill i_time () \
16 − self . first_call_timestamp_window > 60000:
17 self . first_call_timestamp_window = None
18 self . counter_cal ls = 0
19 return True
20 else :
21 return False
22

23 # Asynchronous adapters
24

25 def set_special_async_callback (self , kafka_producer , publish_to) :
26 raise NotImplementedError ("Should have implemented t h i s ")
27

28 def pull_endpoint (self) :
29 raise NotImplementedError ("Should have implemented t h i s ")
30

31 # Synchronous adapters
32

33 def query_endpoint (self) :
34 raise NotImplementedError ("Should have implemented t h i s ")
35

36 def extract_date_from_json (self , json) :
37 raise NotImplementedError ("Should have implemented t h i s ")
38

39 def extract_value_from_json (self , json) :
40 raise NotImplementedError ("Should have implemented t h i s ")
41

42 def extract_producer_from_json (self , json , a d a p t e r _ f i l e) :
43 raise NotImplementedError ("Should have implemented t h i s ")

Listing 5.1 – Baseline class to define new adapters for Virtual Sensor Containers (VSCs)

Figure 5.9 shows the number of observations effectively received by this VAC grouped on
10-second windows. Despite the QoO constraints specified within the SLA submitted to iQAS,
the figure shows that the VAC only received 60 temperature records per minute maximum (for

138

Figure 5.9 – OBS_RATE assessment for a virtual sensor with a maximum API call number of
60 observations per second retrieving temperature for the city of London through the Open-
WeatherMap API

the intervals [0,60[, [60,120[, [120,180[and so on). While this result is consistent with the fact
that the free plan of OpenWeatherMap only allows 60 calls per minute maximum for a same
API key, it still raises some issues regarding SLA meeting.

5.5.3 Discussion

Within iQAS, the data integration is performed by the different VSCs thanks to the definition
of custom adapters. Furthermore, the capabilities of the different virtual sensors should
be expressed using the QoOnto ontology, with SSN-imported concepts. For now, the iQAS
platform only uses ontology inference to retrieve the different sensors that satisfy a given
topic/location couple, regardless of their type and capabilities. While this deployment scenario
shows room for improvement regarding the iQAS platform (we plan to add reasoning based
on sensor capabilities before enforcing a new observation request), it also raises new issues
pertaining to the description of sensor capabilities. In particular, we believe that virtual sensors
may represent complex entities that cannot always be semantically described in the same way
than physical sensors. For instance, a website API does not have an associated battery level
and, by consequent, seems not to have any ssn:hasSurvivalProperty properties. However, this
deployment scenario has shown that the maximum number of API calls allowed per minute
could be a limiting factor for a virtual sensor that could also impact its availability. In a similar
way, the ssn:Frequency capability could be quite complex to express for virtual sensors.

139

Returning to our experiment, the OpenWeatherMap VSC returned the same value for the
temperature of London for more than 4 minutes. We could observe this phenomenon as the
OBS_FRESHNESS attribute decreased over time for the received observations. If we abstract
OpenWeatherMap API as a virtual sensor itself, we can imagine that its capabilities are also
conditioned by the ones of the sensors (physical or virtual) that it uses in turn. Consequently,
it would have been more accurate to set its ssn:Frequency capability based on the time elapsed
between the reception of two different observation records rather than the maximum number
of API calls allowed per minute.

The main lesson to be learned from this deployment scenario is that ensuring QoO guar-
antees requires a deep knowledge of the available resources as well as their characteristics. As
a result, capabilities of third-party observation sources should always be carefully identified
and described, especially when it comes to systems of systems (SoS). In that way, semantics
can help to make the link between an observed symptom (e.g., sensor unavailability) and its
cause (e.g., battery drained for a physical sensor; API call limit reached for a virtual sensor).
To provide finer QoO guarantees, we strongly believe that more research is required to better
describe sensor capabilities (according to their type, as they evolve over time, etc.). Regarding
sensor integration, we have shown that a website API could be considered as a virtual sensor
and, as such, that it could be easily integrated to the iQAS platform with relatively minor
development efforts.

5.6 Use Case 3: Post-disaster Areas

5.6.1 Motivation

So far, we have only considered deployment scenarios where sensors had direct connection to
iQAS through the Internet. In a real-field deployment, additional challenges need to be con-
sidered for physical sensors and observation retrieval. Even in ideal conditions, interference
may occur and can limit sensor connectivity, preventing them to report back some of their
observations to the Sensor Webs. Even worse, the infrastructure used to relay observations (IoT
gateways, access points, etc.) may fail or simply be unavailable: this is especially true when
considering battlefields or areas affected by natural disasters for instance. By “post-disaster
areas”, we we refer to environments where observation collection cannot be performed using
the Internet. Within such challenging environments, continuity of sensing can be particularly
critical for rescue services and response organizations as high-quality observations may be
used to organize first aid and decide where to dispatch essential resources (food, water, medi-
cal supplies, etc.). In this race against time, affected populations should also be able to quickly
communicate with emergency services to inform them on their condition, as well as with their
relatives to let them know that they are safe.

To emulate post-disaster areas, we envision Delay Tolerant Networks (DTNs) where obser-
vation collection is performed in a decentralized peer-to-peer (P2P) manner according to the
store-and-forward paradigm [154]. We only assume that an Internet connection is available
at the “last hop”, in order to transmit observations from the last node (generally a gateway)
to the iQAS platform. The objective of this last deployment scenario is to assess the impact

140

of observation collection on QoO. By considering DTNs, we wanted to show the importance
to still consider network QoS before providing QoO guarantees. To that end, we focus on
the study of observation freshness as it is a QoO attribute that can be both affected by poor
network performances (network latency) and iQAS processing time (iQAS overhead).

5.6.2 Opportunistic Networking and the HINT Network Emulator

Opportunistic networks are a special case of DTNs [155] where nodes systematically exploit
their mobility to benefit from contacts to forward messages. This mobility introduces delays
when a node cannot forward its message. It also allows routing protocols to exploit oppor-
tunistic contacts, in absence of a stable end-to-end path, as a means to create a temporal path
for delivery. Opportunistic networks are also suitable for communications in pervasive envi-
ronments saturated by other devices. The ability to self-organize using the local interactions
among nodes, added to mobility, leads to a shift from legacy packet-based communications
towards a message-based communication paradigm.

During my thesis, I have been involved in a project called “DGA Monitoring Evaluation”.
Founded by the Direction Générale de l’Armement (DGA), this project involved the develop-
ment of a network emulator in order to investigate how we could achieve monitoring for such
decentralized networks. As a result, we proposed HINT [7, 6], a new hybrid emulation system
for opportunistic networks, where nodes can be either real or virtual. HINT is a lightweight
real-time event-driven emulator meant to fit into existing development environments. We
define two interaction levels: the real world and the emulated world. In the real world, real
nodes (i.e., Android mobile devices) run applications to be tested, while in the emulated world,
both virtual nodes and real nodes interact in an opportunistic way. HINT defines nodes’ inter-
action between all nodes at the emulated world, and applies changes in real-time according to
contact opportunities. Real nodes can only communicate with the emulator (at the real world
level), and not directly with each other. Hence, we ensure that all connections go through
HINT. Several network topologies can be drawn, according to the considered user scenario.

Figure 5.10 shows the architecture for the HINT network emulator. HINT is organized
around the event-driven Core Emulator that runs the experiment scenario. Events define
contact (CT) or intercontact (ICT) durations and message management (creation, replication,
forwarding, etc.). The message broker enables the communication between each pair of
nodes (real or virtual). It is used to represent node buffers and store messages. The User
Link Layer is deployed on the real nodes as an Android service, to act as an abstraction layer
between the emulator and the application. This makes HINT transparent to the application
being tested. A cross-layer Monitoring and Tuning system, implemented with a web interface,
allows to follow the experiment in real-time and adjust parameters. Finally, a database stores
the characteristics of each node, along with the data required for the Monitoring system.
For more details on our HINT emulator, the interested reader can refer to the associated
publications.

141

Core Emulator

Message Broker

Monitoring
& Tuning

Database

Real world

HINT emulator

App

ULL

App

ULL

App

ULL

Figure 5.10 – The HINT network emulator architecture. ULL: User Link Layer. (Source: [6])

5.6.3 Scenario and Experimental Results

First, we configured the HINT emulator. Table 5.5 gives the main parameters that we used to
emulate a post-disaster area. We chose to emulate a P2P opportunistic network composed of
a total of 30 nodes, including 3 Android devices (real nodes) and 27 virtual nodes. We set the
emulator to generate contact (CT) durations according to an exponential law of parameter
λ= 1 and intercontact (ICT) durations according to an exponential law of parameter λ= 0.02.
By consequent, CT and ICT are homogeneously exponentially distributed random variables,
which have a mean of 1 second and 5 seconds, respectively. Please note that the use of
such distribution functions and parameters is a common practice in the field of DTNs [156].
Within HINT, each node has an infinite buffer size (in order to avoid any packet loss) and
communicates instantaneously with its neighbors (infinite bandwidth) in an “always forward”
fashion. By consequent, each original message is stored and forwarded without replication,
which mean that only one version of each original message exists in the whole P2P network at
any time.

Then, we developed a specific adapter Python class for the future VSC we planned to
deploy. In contrast to the WoT deployment scenario, we implemented only asynchronous
methods of the AbstractAdapter in order to be able to poll observations from HINT as soon as
they arrive. Using this adapter, we built a new VSC that acts as a transparent proxy between
the HINT emulator and the iQAS platform. Then, we submitted a request without any QoO
constraints to retrieve all observations coming from the HINT emulator. Finally, within HINT,

142

HINT parameters Values

nodes 30
real nodes 3

virtual nodes 27
λ param. for CT 0.02
λ param. for CT 1.0

Buffer size +∞
Bandwidth +∞

Routing protocol “always forward”

Table 5.5 – Configuration of the HINT network emulator

we generated 100 observations from two real nodes (nodes 1 and 2) for a gateway node (node
6) at a pace of 1 observation every 5 seconds. Each observation had to be first internally
exchanged within HINT in a peer-to-peer manner before reaching the gateway node where it
was consumed by our VSC and then sent to the iQAS platform (see Figure 5.11).

Once that all the 200 messages were processed and delivered by iQAS, we computed of-
fline the freshness (the age) of the observations when 1) they arrived at the HINT gateway
node (HINT viewpoint) and 2) they were delivered by iQAS to the VAC (iQAS viewpoint). Fig-
ure 5.12 depicts the Complementary Cumulative Distribution Function (CCDF) that represents
the age of the observations from both HINT and iQAS perspectives. For example, this figure
shows that, in 10% of time, observations that are effectively delivered by iQAS to its consumers
are at least 15-second old.

5.6.4 Discussion

Please note that the specific experimental results that we obtained for this deployment sce-
nario are quite linked to the configuration of the HINT emulator. For instance, we could
have observed different observation freshness values if we had run several times the same
experiment due to the distribution functions to generate CT and ICT durations. We could
also have observed better overall observation freshness by varying the number of nodes and
parameters of the mathematical distributions (to emulate a denser and more dynamic P2P
opportunistic network for instance). Still, in the end, the different lessons learned do not
depend on the HINT configuration chosen. The main lesson to retain from this deployment
scenario is that the overhead introduced by the iQAS platform in terms of delay is negligible
compared to the routing overhead introduced when observation collection is achieved in
a peer-to-peer decentralized way. In other terms, this means that QoO does not intend to
replace network QoS guarantees. By consequent, in order to significantly improve the overall
service provided to their end-users, QASWS should consider both network performances (that
can be characterized with network QoS attributes such as latency) and QoO (e.g., freshness) as
complimentary quality dimensions.

The fact that we chose to evaluate QoO for such uncommon networks could be surprising.
However, recent announcements have shown that this kind of P2P networks is already hav-
ing (and could continue to have in a near future) some concrete applications. For instance,
Google has recently announced Nearby Connections 2.0, which will enable fully offline and

143

Core Emulator

Message Broker

Monitoring
& Tuning

Database

Real world

HINT emulator

App

ULL

App

ULL

App

ULL

appli1 Virtual Sensor
Container (VSC)

HINT network
emulator

Figure 5.11 – Binding the HINT network emulator with iQAS to emulate observation retrieval
within post-disaster areas

high bandwidth P2P device communications6. The latest advances for Wi-Fi direct and Blue-
tooth Low Energy (BLE) prove that technology already exists to enable the deployment of
opportunistic networks at local scale. With Nearby Connections 2.0, Google envisions seamless
auto-configuration of Things in proximity of a user to provide customized context-aware
services, which is somewhat reminiscent of previous research conducted on smart spaces and
smart home environments [96].

As I write these lines, the hurricane Irma has devastated central Florida and a 7.1-magnitude
earthquake has affected Mexico. Those natural disasters left many residents with only the
remaining battery on their cellphones to keep them in touch with the world, for those having
the chance to be in range of a still-operating cell network. In light of such emergency scenarios,
we can imagine that DTNs and opportunistic networks could provide a backup solution if
infrastructure would come to fail. Of course, it would require much larger adoption from users
in order to work as transparently as the Internet in case of earthquakes or hurricanes [157].
Meanwhile, proper QoO characterization would be critical in order to assess the relevancy of

6https://android-developers.googleblog.com/2017/07/announcing-nearby-connections-20-fully.
html

144

https://android-developers.googleblog.com/2017/07/announcing-nearby-connections-20-fully.html
https://android-developers.googleblog.com/2017/07/announcing-nearby-connections-20-fully.html

Figure 5.12 – CCDF for the OBS_FRESHNESS for observations generated by two HINT nodes
and consumed by a single iQAS consumer (log-log scale)

some delivered information. In this direction, it is no coincidence if real-time disaster maps
are currently a top-research priority at Facebook7. Even if this Facebook project does not use
DTNs or opportunistic networks to perform observation collection, this project shows the
importance of QoO assessment by IoT platforms, in order to provide the most accurate and
up-to-date information possible to final consumers (i.e., organizations that will then use it to
provide humanitarian response).

5.7 Evaluation of iQAS Specific Requirements

This section wraps up iQAS evaluation and details how we validated the different specific
requirements for the iQAS platform introduced in Section Use Cases and Specific Requirements
for iQAS in Chapter 4 given previous evaluations and deployment scenarios.

5.7.1 Functional Requirements

At this point, we assume that most of the functional specific requirements for iQAS (starting
with “i-F”) have been validated throughout the different deployment scenarios. Thus, we
have shown that iQAS users can submit observation requests with SLAs and that the platform

7https://research.fb.com/facebook-disaster-maps-methodology

145

https://research.fb.com/facebook-disaster-maps-methodology

iQAS parameters Values

“Tick” frequency for MAPE-K processes 10 s
Time interval between QoO reports 1 s

events before symptom 2
symptoms before action 2

Symptom lifetime 30 s
Time to observe healing effect 60 s

Max. number retries 5

Table 5.6 – Configuration of the MAPE-K loop used to evaluate iQAS adaptability

adapts its behavior to deliver QoO-adjusted observations in a request-specific manner. Fur-
thermore, iQAS also provides feedback that can be retrieved using its different APIs or through
its user-friendly GUI. Finally, domain-specific experts can define new QoO Pipelines, new
QoO attributes and can express relationships between these two concepts with the help of the
provided QoOnto ontology.

5.7.2 Non-functional Requirements

In this section, we have chosen to detail factual elements (implementation choice, software,
complementary evaluations, etc.) to illustrate the different implementation efforts made to
comply with the non-functional requirements (starting with “i-NF”). Like many researchers,
we believe that the assessment of non-functional features can be quite a subjective notion,
which may depend on users and their needs [158]. Since we plan to continue to develop iQAS,
we also propose some perspectives that could be envisioned to go further than the simple
proof of concept.

Adaptability (i-NF1) Within iQAS, adaptability requirement refers to QoO-based adaptation,
which can be decomposed into auto-configuration and reconfiguration. While we validated
the auto-configuration feature with the different deployment scenarios, we have not shown any
concrete reconfiguration example so far. In order to validate the QoO-based reconfiguration
feature, we envisioned a situation where a guaranteed SLA was repeatedly violated. For the sake
of simplicity, we ensured that the only remedy available – the QoO Pipeline “CustomPipeline”
previously defined – was sufficient in order to heal the corresponding observation request if
its nb_copies customizable parameter was equal to 3. We kindly remind the reader that this
QoO Pipeline outputs nb_copies identical copies for each incoming Raw Data observation.

For this experiment, Table 5.6 shows the configuration used by iQAS for the MAPE-K loop.
First, we configured a VAC to submit a temperature request for the city of Toulouse with a QoO
constraint of obsRate_min=3/s and a “GUARANTEED” sla_level. In parallel, we deployed one
VSC that had a sensing rate of 1 temperature observation per second (randomly generated).
Finally, we monitored the observation rate experienced by the final VAC over time.

The request logs (see Listing 5.2) show that the first healing is performed about 45 seconds
after that the pipeline graph was successfully enforced. This first healing action was triggered

146

1 " logs " : [
2 "1504717521626 : Healing process has succeeded . Request ’ s s t a t e i s returning to

ENFORCED. " ,
3 "1504717461516 : On the point to heal request with CustomPipeline for the time #3" ,
4 "1504717401401 : On the point to heal request with CustomPipeline for the time #2" ,
5 "1504717341318 : On the point to heal request with CustomPipeline for the time #1" ,
6 "1504717296047 : Successful ly created pipeline graph by enforcing following QoO

constraints : { obsRate_min=3/ s } " ,
7 "1504717295861 : Found couple (ALL / ALL) , request forwarded to Monitor . " ,
8 "1504717295775 : Request object has been created . "
9]

Listing 5.2 – Logs for an observation request that have been healed by the iQAS platform

by 2 symptoms, each symptom being the consequence of 2 events created within the Monitor
actor. By consequent, each healing requires 4 events in total. Since we set the tick frequency
for MAPE-K processes to 10 seconds, this explains this first waiting period of 45 seconds during
which the SLA is violated (1 observation per second instead of 3 observations per second).
The first healing action was a structural reconfiguration, achieved with the deployment of
the CustomPipeline with a nb_copies of 1 (initial value – no replication). Please note that
the choice of this specific remedy is the consequence of both an automatic discovery of
available QoO Pipelines and an inference process based on the QoOnto ontology. Then,
iQAS monitored QoO during 60 seconds to observe the healing effect, as specified in its
configuration. During this monitoring period, events, symptoms and actions continue to
be emitted but are simply ignored. Once the maximum period to observe a healing effect
expired, the iQAS platform immediately triggered a new healing action due to the different
events/symptoms that had continued to be triggered. This second healing action consisted in
a behavioral reconfiguration as the iQAS platform had identified that the next remedy to try
was already in use. Using ontology inference in conjunction with basic logic rules, the iQAS
platform was able to “understand” that the value of the customizable parameter nb_copies
should be increased. Therefore, it reconfigured the CustomPipeline with a nb_copies of 2. Later,
since the SLA was still violated, the iQAS platform performed a last healing action (with a
nb_copies of 3), which helped to satisfy the observation rate QoO constraint. This last remedy
enabled to keep meeting the SLA beyond the monitoring period. Therefore, iQAS kept this QoO
Pipeline deployed and updated the request state to “ENFORCED”. We indicate the different
healing phases in Figure 5.13 to show the correlation between the deployment of the different
remedies and the evolution of the observation rate for the given request. The oscillations that
can be observed after 200 seconds of simulation are independent of the healing process as
they are due to some delays in the transmission of the QoO reports originating from the VAC.

Currently, our MAPE-K is relatively simple and can only trigger the deployment of one
QoO Pipeline at a given predefined position within observation graphs. However, the behavior
of each MAPE-K process can be individually upgraded with few development efforts. For
instance, it could be feasible to integrate Bayesian Networks and probabilistic reasoning to
have more advanced adaptation strategies [44]. In the future, we plan to investigate QoO

147

Figure 5.13 – Impact of iQAS adaptation on observation rate for one observation request. The
SLA was containing QoO constraints (obsRate_min=3/s), which has brought the platform to
heal the request using the QoO Pipeline CustomPipeline.

Pipeline composition as a way to ensure finer-grained QoO guarantees.

Transparency (i-NF2) iQAS fulfills the QASWS vision by enabling transparent access to sen-
sor outputs with the help of SLA definition. As such, iQAS is a middleware that acts as an
abstraction layer between applications and sensors. We enable iQAS transparency by only
exposing its API and a GUI, hiding the QoO-based adaptation processes. Besides, we decouple
the request submission from the observation consumption task: once a request has been
submitted to iQAS, any consumer may directly retrieve observations by subscribing to the
assigned Kafka sink topic. Since Apache Kafka is a popular message broker, numerous clients
have been developed for it in many programming languages, which facilitate the integration
of third-party software (developed in Java or not) that may want to interact with iQAS.

Scalability (i-NF3) Previously, we already evaluated some aspects of iQAS scalability by
assessing throughput and response time KPIs. Although the platform has only been deployed
locally so far, we are already pleasantly surprised of its performances as a first prototype.
Besides, we identified the configuration of the Kafka message broker as the main bottleneck for
our platform, which should guarantee strict delivery order for continuous observation streams.
In situations where such guarantee is not relevant any longer, overall iQAS performance could
be drastically improved by relying on parallel Kafka clients to simultaneously publish/consume

148

observations to/from several Kafka topic partitions. Finally, depending on both use case and
stakeholder needs, iQAS may also be distributed and deployed on the Cloud. However, please
note that such deployment scenario could also introduce more latency to observations and,
therefore, degrade their QoO.

Extensibility (i-NF4) Extensibility was a key requirement during the development of iQAS.
In particular, we have shown that the platform was extensible in many different ways. First, the
use of the QoOnto ontology allows to easily add new concepts and new relationships between
them. Thus, domain-specific experts can define new QoO attributes, QoO Pipelines, virtual
sensors, capabilities, etc. Then, iQAS facilitates the concrete development and deployment of
new sensors by providing a customizable Docker image (VSC) that can also fulfill the role of
an adapter by acting as a proxy between an external observation source and the iQAS platform.
Finally, the definition of new QoO Pipelines has been simplified as much as possible in order
to reduce development efforts. Regarding its plug-and-play ability, iQAS enables automatic
discovery of new sensors and QoO Pipelines on the condition that they have been correctly
described using the QoOnto ontology.

Interoperability (i-NF5) Interoperability can be defined as the ability of a system to ex-
change and use data with other systems without requiring additional change of its interfaces
or encodings. We mainly achieve iQAS interoperability at semantic and syntactic levels. For
semantic interoperability, we rely on the features provided by ontologies and we proposed the
QoOnto ontology to define meaningful QoO-related concepts. To increase semantic interop-
erability with other sensor-based systems, we developed this ontology by reusing concepts
defined by the popular W3C SSN standard (partial import). Regarding observations, iQAS
enables syntactic interoperability by using popular data formats such as JSON and JSON-LD
standards to represent observations. For Knowledge observations, the JSON-LD format allows
to directly annotate an observation with concepts from the QoOnto ontology, which may also
increase semantic interoperability with the final consumer.

iQAS usability Since the platform is intended to be used by stakeholders (users, domain-
specific experts, developers) with different skills, usability was an implicit non-functional
requirement for iQAS. Therefore, with regard to iQAS interaction, we chose to provide both an
API and a GUI for the platform. As the GUI was intended to be primarily used by users that
may not have as many skills than domain-specific experts regarding QoO, we developed it by
following the Google’s Material Design philosophy. With such guidelines and components, a
material GUI is able to “speak” a visual language8, which helps the user to understand and
focus more on what is really important (in our case, QoO).

5.7.3 Discussion

This section has provided an extended evaluation of iQAS specific requirements. Having
validated the functional ones throughout three use cases, we insisted on the evaluation of

8https://thenextweb.com/dd/2015/11/10/what-are-the-real-merits-of-material-design

149

https://thenextweb.com/dd/2015/11/10/what-are-the-real-merits-of-material-design

iQAS non-functional requirements by providing complementary experiments when needed.
This analysis has shown that the fulfillment of the QASWS vision cannot be achieved without
a deep understanding of some paradigms, theories and software products. Consequently,
researchers should now wear several hats in order to be able to select, integrate and correctly
configure software products that best meet their needs.

In a near future, we foresee that the release of new IoT-related software will continue to
stimulate the conception of increasingly sophisticated Sensor Webs. In order to move towards
the QASWS vision, we believe that further research should be undertaken to investigate more
deeply the impact of implementation choices and software configuration on QoO. In that, the
Sensor Web field represents a unique playground for researchers by reconciling theoretical
challenges, software engineering and concrete problems to solve.

5.8 Summary of the Chapter

In this chapter, we have extensively evaluated iQAS before providing three concrete use cases
where the platform could be applied to.

First, we presented a conceptual evaluation to validate that our iQAS implementation was
compliant with our QASWS Generic Framework presented in Chapter 3. This conceptual eval-
uation also gave us the chance to position iQAS within the recent Internet of Everything (IoE)
paradigm. Then, we presented three Key Primary Indicators (KPIs) that we considered as
representative of iQAS performance given its requirements and general purpose. Thus, we
performed several evaluations of the platform overhead, throughput and response time while
varying the configuration of Kafka clients (producers/consumers) to better understand the
meaning of some configuration parameters. As expected, experimental results show that iQAS
performance is closely linked to the configuration of Kafka clients: this is consistent with the
fact that we decided to use Kafka topics as intermediary buffers. Besides, in compliance with
Queuing Theory, we acknowledged that some trade-offs should be considered between over-
head (i.e., latency), throughput (i.e., bandwidth) and individual message size of observations
when configuring iQAS. Apart from these considerations, iQAS performances are more than
satisfactory for a first prototype deployed locally.

Regarding iQAS applications, we introduced three deployment scenarios explaining how
QoO could likely improve the overall service provided to end-users. In that direction, we focus
on specific QoO attributes tailored for each use case: observation accuracy within Smart Cities,
observation rate for virtual sensors pertaining to the Web of Things and, finally, freshness when
observations are collected in a peer-to-peer decentralized fashion within “post-disaster areas”.

Returning on the specific features offered by iQAS, we concluded this chapter by detail-
ing how the platform meets its functional and non-functional specific requirements. As the
evaluation of non-functional requirements can be quite difficult for software, we particularly
emphasized the different development efforts that had been made to enable non-functional
features such as adaptability, transparency, scalability, extensibility, interoperability and us-
ability.

150

Chapter 6
Conclusions and Perspectives

“The difficulty lies not so much in developing new ideas as in escaping from old ones.”

- John Maynard Keynes

Contents

6.1 Contributions: QoO-aware Adaptive Sensor Web Systems 152

6.1.1 Generic Framework for QASWS . 152

6.1.2 The iQAS Platform . 154

6.1.3 Prerequisites for QASWS Adoption and Use 155

6.2 Perspectives . 156

6.2.1 Improvements to the QASWS Generic Framework 156

6.2.2 Improvements to the iQAS Platform . 157

6.2.3 Transverse Paradigms of Relevance for QoO 158

6.2.4 QoO Considerations Regarding the Forthcoming IoE 161

This chapter summarizes the major contributions of the thesis and discusses the perspec-
tives opened by our research.

As subjective human beings, we have always wanted to know more about our surrounding
environment. This will has motivated the development and deployment of countless sensor-
based systems, often relying on sensor middlewares to recollect observations. With the recent
Internet of Things (IoT), sensor middlewares have been forced to evolve in order to encompass
new kinds of sensors (such as virtual ones) and meet always more demanding consumer
needs. In particular, analytic needs have driven the development of “IoT platforms” that may
still rely on some sensor middlewares to perform observation collection. Compared to initial
sensor middlewares, IoT platforms aim to provide customized additional services to their

151

consumers (which may either be users or applications) by reasoning on received observations.
Whether middlewares or IoT platforms, these systems seek to bridge the gap between sensor
capabilities and consumer needs to simplify the development of end applications. This vision,
known as the Sensor Web paradigm in the sensing research field, was first defined by the
NASA in the late 1990s. This thesis builds on the existing and envisions the Sensor Web
paradigm as a way to address novel research challenges brought by the IoT or the Internet of
Everything (IoE). In particular, it considers a Sensor Web as “any Web-based system that bridges
the gap between any type of sensors (physical, virtual or logical) and higher-level applications”.
This modern definition implicitly considers Sensor Webs as data-centric systems that should
deliver customized services to applications. Therefore, since Sensor Webs are data-centric
systems, we believe that a greater focus should be put on Quality of Observation (QoO).

The main contributions of this thesis have been published in [5, 4, 3, 2, 1].

6.1 Contributions: QoO-aware Adaptive Sensor Web Systems

Sensor Webs originally referred at systems that performed environmental monitoring and
retrieved observations from physical sensors only. Novel paradigms, services and usages
have gradually required Sensor Webs to evolve in order to cope with new research challenges.
Among them, this thesis identifies integration, QoO and system adaptation as three important
issues that should be addressed at middleware level to simplify future application development.
Based on a rigorous study of the state of the art, this PhD thesis motivates and envisions QoO-
aware Adaptive Sensor Web Systems (QASWS) as a novel generation of middlewares able to
better achieve the Sensor Web vision within the IoT and the forthcoming IoE.

In Chapter 3, we presented a Generic Framework for the development of QASWS. In
Chapter 4, we instantiated this framework and introduced a custom prototype of an integration
platform for QoO Assessment as a Service (iQAS). In a complementary way, we detailed and
justified major implementation choices (e.g., programming language, architecture, software
used, etc.) that were not addressed by the generic framework. Finally, we evaluated iQAS
performances and requirements in Chapter 5. In order to show that iQAS is a fully functional
prototype, we also presented three deployment scenarios where QoO considerations could
significantly improve the overall service provided to end-users.

6.1.1 Generic Framework for QASWS

Despite a large amount of already existing Sensor Webs, novel custom and non-standardized
solutions are regularly conceived from scratch by researchers. As previously mentioned, this
trend can be explained by several reasons, such as the complexity to reuse existing stan-
dards (like OGC SWE specifications) or the lack of feature(s) within existing solutions (e.g.,
semantic support, QoO, etc.) for instance. The extended analysis of 30 Sensor Web solutions
developed between 2003 and 2017 revealed that only few of them focused enough on inte-
gration, QoO and system adaptation considerations. We believe that these deficiencies are
the direct consequence of a lack of methods and guidelines to conceive QoO-aware Adaptive

152

Sensor Web Systems (QASWS). Indeed, QoO considerations may hardly be found in most
of architecture frameworks. Differently from Trust, Security or even Privacy requirements
that seem to gain in importance within these frameworks (e.g., considered as cornerstone
requirements in the FP7 IoT-A project), QoO is too often mentioned as a further requirement
that need to be addressed by applications themselves. Differently, we argue that QoO should
be addressed from design phase when conceiving a new Sensor Web.

In this direction, our first contribution is a Generic Framework for QASWS. It aims at help-
ing researchers to conceptually design from scratch their own Sensor Webs to better address
integration, QoO and system adaptation issues within modern sensor environments such as
the IoT. From a different perspective, it is also possible to use this generic framework to analyze
or improve existing systems. It is worth noting that this generic framework specifically focuses
on the three research challenges of interest for this thesis. We developed this framework in a
rigorous manner by following the international standard ISO/IEC/IEEE 42010 for Architecture
description (Systems and software engineering). In a similar way to software development, we
defined both functional and non-functional requirements that any concrete QASWS imple-
mentation should satisfy. Then, we used these general requirements as foundations to provide
three resources that, when taken together, form the framework:

Reference Model presents key concepts that are used by the generic framework. For the sake
of clarity, we decomposed this model into four sub-models, each of them addressing a
particular scope (Domain, Observation, Functional, Adaptation). Besides, we formalized
and described concepts by using popular “visualizations” (such as UML class diagrams,
layer-based abstract architectures, etc.) whenever this was possible. Among the key
concepts considered by the reference model, we can cite observation levels (Raw Data,
Information, Knowledge), QoO attributes, QoO Pipelines and QoO mechanisms. In
order to make the link between the different concepts, we provide a custom QoOnto
ontology that allows researchers to express different relationships between Observation
producers, Services, observations and QoO. Compliant with Linked Data best practices,
the QoOnto ontology imports many concepts from popular standardized ontologies
such as W3C SSN and IoT-Lite to enable alignment.

Reference Architecture addresses the different research challenges from a developer per-
spective. It clarifies the main interactions between components of QASWS and de-
tails complex processes involving several entities such as QoO-based adaptation. We
decomposed this architecture into four views: while the Functional view focuses on
integration-related concerns, the Observation view refers to QoO and the Adaptation
view describes system adaptation. Finally, the Deployment view provides a summary
of all concerns and models, linking entities with observations, business services and
stakeholders.

Reference Guidelines are intended to be used by researchers when instantiating the generic
framework to derive a concrete Sensor Web implementation. Rather than standards
or strict rules to follow, they should be considered as hints or “good questions to ask”,
especially to make important implementation choices. Each best practice is generally
related to a recurrent and major trend(s) observed among the surveyed Sensor Web

153

solutions. In order to have a more exhaustive list, we also added some guidelines
coming from our personal experience when developing the iQAS platform. For an easier
access, we gathered and regrouped these best practices into categories (e.g., general
technological choices, semantics and ontologies, etc.).

We evaluated our abstract framework according to the compliance of the proposed models,
views and guidelines regarding the initial general requirements. For each functional and
non-functional requirement, we highlighted which model, architecture view and guidelines of
the QASWS framework could be used to address it. This systematic mapping showed that our
Generic Framework does provide resources to address all the identified research challenges of
this thesis (integration, QoO, system adaptation).

Finally, we positioned and compared our generic framework with four major existing
architecture frameworks or reference models, namely OGC SWE, ITU-T IoT Reference Model,
IoT-A ARM and Cisco’s IoT Reference Model. This analysis showed the compliance and the
synergy of our framework with the existing work. In order to consider additional features
such as Security or Privacy, we advise researchers to use the QASWS Generic Framework
in conjunction with other architecture framework(s) (e.g., OGC SWE 2.0) or other reference
model(s) (e.g., FP7 IoT-A project) that have been proposed for Sensor Webs or the IoT.

6.1.2 The iQAS Platform

From experience, existing Sensor Webs are quite difficult to use or to interact with. This can
be explained in part by the fact that they often rely on several components, which should
be configured and launched separately (e.g., monitoring service, processing service, etc.).
Sometimes, they also lack of APIs and, therefore, cannot be used by other Sensor Webs or
applications. Despite the fact that they generally are open source solutions, few of them are
easily extensible without requiring a long learning phase. Besides, this thesis has shown that
QASWS vision could not fully be achieved using only a Sensor Web, a commercial platforms or
software at once. Given this analysis, our second contribution is the development of a QASWS-
compliant solution, namely an integration platform for QoO Assessment as a Service (iQAS). To
develop iQAS, we relied on our Generic Framework for QASWS in order to instantiate a concrete
Sensor Web implementation. As a result, the iQAS platform aims to specifically address all
the identified research challenges concerning integration, QoO and system adaptation. It
is worth mentioning that the iQAS proposal goes beyond simple engineering work as it is
complementary of the generic framework by addressing notions that had not been covered so
far.

Chapter 4 presented our main implementation choices and the different development
phases of the iQAS platform. We chose to implement iQAS by following a component-based
software engineering approach, where some components could be Actors. We also used the
Reactive Streams approach to correctly handle and process unbounded observation streams
with guarantees in terms of delivery order. The iQAS prototype has been implemented in
Java 1.8 with the help of the Akka toolkit. Regarding observation storage considerations, we
used Apache Kafka message broker as a “shock absorbing” technology to retain observations
for a certain amount of time. Finally, for ontology triple store, we used Apache Jena and Apache

154

Fuseki software that enable SPARQL queries over HTTP and ontology inference. With all these
implementation choices, iQAS aims to provide high-quality observations to its consumers in
an application-specific way given some SLAs. It has been developed for being interoperable,
extensible, configurable and usable by stakeholders with different skills and interests.

In Chapter 5, we performed a conceptual and a performance evaluation of the iQAS plat-
form. First, we showed that iQAS complies with the QASWS vision as it had been correctly
instantiated from the generic framework. In particular, regarding iQAS requirements, we
detailed the different development efforts that have been made to enable non-functional fea-
tures such as adaptability, transparency, scalability, extensibility, interoperability and usability.
This chapter also presented three Key Primary Indicators (KPIs) that we used to assess iQAS
performances. Thus, we evaluated the platform overhead, throughput and response time, by
varying the configuration of Kafka clients (producers/consumers) to better understand the
meaning of some configuration parameters. As expected, experimental results show that iQAS
performance is closely linked to the configuration of Kafka clients: this is consistent with the
fact that Kafka topics are used as a major implementation choice for intermediary buffers.
Besides, in compliance with Queuing Theory, we acknowledge that some trade-offs should
be considered between overhead (i.e., latency), throughput (i.e., bandwidth) and individual
message size of observations when configuring iQAS. Apart from these considerations, iQAS
performances are more than satisfactory for a first prototype deployed in local.

Regarding iQAS applications, we presented three deployment scenarios explaining how
QoO may be an important notion to consider for improving the overall service provided to
end-users. In this way, we showed the importance to consider the right metrics by introducing
specific QoO attributes tailored for each use case: observation accuracy within Smart Cities,
observation rate for virtual sensors pertaining to the Web of Things and, finally, freshness when
observations are collected in a peer-to-peer decentralized fashion within post-disaster areas.

6.1.3 Prerequisites for QASWS Adoption and Use

We envision that researchers will mainly use our generic framework to better understand the
functioning of some already-existing Sensor Webs. In that direction, some prerequisites about
semantics and ontologies would be preferable, especially to reuse or extend the ontologies
used (QoOnto ontology, W3C SSN, etc.).

In cases where researchers would like to conceive their own QASWS prototype from
scratch, we invite them to have a look at our iQAS implementation. At the time of writing
this manuscript, no public repository is available to browse the source code of our platform.
However, we plan to make it available as soon as possible to the widest possible range of users,
providing appropriate documentation to install, configure and use it. In the meantime, access
to a private repository may be granted to any interested reader upon simple request.

For information purposes, please note that the following software dependencies are re-
quired to use the iQAS platform:

• Java 1.8 for running iQAS;
• Apache Maven for compiling custom-based QoO pipelines;
• Kafka and Zookeeper for storing and delivering observations;

155

• MongoDB for saving iQAS state;
• Apache Jena Fuseki for enabling the Knowledge base and autonomic adaptation.

As previously shown by our evaluation campaign, there are important trade-offs between
observation size, latency and throughput. Therefore, we advise researchers to take the time to
carefully read Kafka documentation prior to start configuring the iQAS platform itself. Last
but not the least, a minimal Knowledge base that contains at least one sensor is required so
that the iQAS platform can start enforcing consumer requests. In order to provide autonomic
QoO-based adaptation, the user will have to provide and describe additional custom-based
QoO pipelines. In those cases where researchers do not have access to sensors, they may use
VSCs to emulate different kinds of sensors and quickly test their QoO pipelines.

6.2 Perspectives

This PhD thesis has envisioned QoO-aware Adaptive Sensor Web Systems (QASWS) as a way
to address some recent research challenges pertaining to sensor-based systems. In constant
evolution, the sensing field has revealed to be a vibrant playground for studying and promoting
the QoO notion. This section first presents some short-term perspectives that relate to the
enhancement of our two contributions.

Besides, since the QoO notion is not specific to Sensor Webs and can be applied within
many data-centric solutions such as information systems, the outcomes of our research work
also open important and interesting long-term perspectives for many research fields. As a
result, we also present examples of recent paradigms that could be used to provide some QoO
guarantees before foreseeing the role that QoO could play in the forthcoming IoE.

6.2.1 Improvements to the QASWS Generic Framework

Our Generic Framework is a first attempt to formalize the development of QASWS. In order to
improve it, we could for instance:

• Upgrade to the new release of the W3C SSN ontology In this thesis, we developed the QoOnto
ontology by building on the SSN-XG release of the W3C SSN ontology. To better com-
ply with the Sensor Web vision, we plan to update our QoOnto ontology with the new
OGC-compliant SSN release. As already mentioned, this latest release will allow bet-
ter alignment with OGC SWE 2.0 core concepts (especially regarding the Observation
concept) and will support a wider range of applications and modern IoT-related use
cases.

• Explicit method for derivation and instantiation In Chapter 4, we explained the method-
ology followed to instantiate our generic framework for QASWS. With the benefit of
hindsight, we believe that such methodology is not trivial and deserves to be clarified as
part of the framework. An idea could be to merge this methodology with the reference
guidelines of the generic framework in order to provide a precise procedure with several
steps (checklist). Each step could correspond to an important implementation choice
and the guidelines to consider could depend on those already made by researchers.

156

• Framework recommendations to address more IoT requirements Our framework mainly fo-
cuses on integration-related, QoO and system adaptation issues in order to enable
the development of QASWS. In order to address certain extra requirements (such as
Security and Privacy for instance), we advised researchers to refer to other existing
frameworks (e.g., the IoT-A ARM framework does consider observation Security). For
the sake of completeness, we plan to provide a “coverage matrix” of the most important
IoT requirements (not only restricted to QASWS) as well as some framework recom-
mendations to address them, in cases where our generic framework does not cover
them.

6.2.2 Improvements to the iQAS Platform

Regarding our iQAS prototype, we believe that the following changes could improve its compli-
ance with the QASWS vision:

• Distinction between physical and virtual/logical sensors This thesis has shown that sensors
exhibit some specificities depending on their type (physical, virtual and logical). For
instance virtual sensors do not have an associated battery level but their maximum num-
ber of API calls allowed per minute can still be a limiting factor (ssn:hasSurvivalProperty).
This statement makes difficult to abstract all sensor types as one single entity (VirtualSen-
sor). We are currently investigating the possibility to better describe sensor capabilities
according to their types. To achieve this effort, we will continue to review the state
of the art. In particular, the notion of “wrappers” used by the GSN Sensor Web [106]
seems to be a promising way to provide different VSC templates with predefined features.
Please note that an update of the QoOnto ontology could be required in order to remain
consistent with the iQAS ecosystem.

• Easier construction of iQAS requests (API) For now, all API requests should be submitted
with a JSON payload containing the different SLA parameters under the key/value
form. Even if the JSON format is a popular and widely recognized standard, this way of
doing requires from users to be aware of the different parameters that can be specified.
So far, we have taken care to provide adequate and up-to-date documentation regarding
the QoO pipelines provided by iQAS. In order to facilitate the construction of further
iQAS requests, we plan to allow the submission of requests in the same form than the
observation level asked. For instance, a “Raw Data SLA’s” could refer to a specific sensor
while an “Information SLAs” could refer to a location and topic (current choice). Finally,
ontology inference could also be used to handle “Knowledge SLAs” to automatically
infer the QoO pipelines to deploy (see below Improve iQAS’ adaptation feature).

• Easier iQAS configuration Currently, a large part of iQAS configuration relies on manual
updates of the QoOnto ontology. In particular, this is the case when adding or removing
a new sensor, QoO attribute or QoO Pipeline. In this direction, we believe that semantic
wikis could be helpful to facilitate iQAS configuration. As an evolution of basic wikis,
semantic wikis [159] couple ontologies and wiki-based platforms, enabling intuitive
knowledge management as well as human-human collaboration. By relying on semantic

157

wikis, the iQAS platform could be configured by several stakeholders with different
domains of expertise. Besides, the web-based interface of semantic wikis could also
improve iQAS usability, allowing users to browse the ontology going from page to page
or navigating through categories. Finally, these semantic wikis could also provide some
“QoO profiles” that could serve as base templates for iQAS requests depending on the
nature of the observations asked (critical real-time observations, trusted observations,
etc.). Such profiles could be particularly helpful for novice users who might not exactly
know which QoO constraints could be suitable for their application(s).

• More complex adaptation feature In this thesis, we described the central role played by the
MAPE-K loop in the adaptation feature. Even if we chose to keep each MAPE-K process
relatively simple, we have mentioned the fact that this loop could be upgraded with few
development efforts. For instance, it could be feasible to integrate Bayesian Networks
and probabilistic reasoning to have more advanced adaptation strategies [44]. For now,
the behavior of each MAPE-K actor (Monitor, Plan, Analyze and Execute) is hard-coded
and, therefore, quite difficult to change dynamically. As an improvement, we plan to
integrate a rule engine (such as the Drools software) to our platform to improve its
extensibility and interoperability. With such engine software, stakeholders could easily
define their own rules regarding symptoms, RFCs or even actions. For instance, they
could define actions involving concrete actuators by providing the source code of the
action to execute when triggered (e.g., setting the sensing rate of a sensor by using its API).
Regarding the Monitor actor, we plan to add a better discovery and reasoning regarding
sensor features (sensor type and sensor capabilities): when receiving a new iQAS request,
the Monitor will be able to detect requests that cannot be satisfied (e.g., WoT deployment
scenario considered). Finally, we believe that a finer semantic characterization of QoO
Pipelines could enable composition, which could allow iQAS to provide more elaborate
QoO remedies in turn. For this matter, we plan to investigate the work achieved regarding
Semantic Web Services, with a special focus on ontologies used to describe the service
offered by Web Services (e.g., the OWL-S ontology).

6.2.3 Transverse Paradigms of Relevance for QoO

As previously mentioned, the QoO notion is not specific to the Sensor Web field. During this
PhD thesis, we have had the opportunity to discover many paradigms that considered QoO or
that could be used to provide QoO guarantees. In the following, we present three paradigms
that we believe to be the most relevant for future research work. For each of them, we try
to envision how it could be used together with a QASWS solution to provide additional QoO
guarantees.

• Sensing as a Service In Chapter 2, we already introduced Sensing as a Service (S2aaS) para-

digm as the result of the “cloudification” of some Sensor Webs. In fact, the S2aaS model
relies on IoT infrastructure to specifically address Smart City challenges regarding data
collection and data processing. It aims at reconciling technological advances in IoT
with business-related challenges of Smart Cities. This sensing model takes advantage of

158

certain features of Cloud-based platforms (pay as you go, elasticity, multi-tenancy, SLAs,
etc.) while considering distinct entities and stakeholders involved in the sensing process
and the observation distribution. This model relies on four conceptual layers (see
Figure 6.1) and introduce the notion of sensor and data ownership. Sensor Data Owners

Figure 6.1 – The Sensing as a Service model (Figure taken from Perera’s book [67]).

layer comprises sensors and their owners. Sensor Data Publishers are facilitators that
maintain a registry of available sensors, establish SLAs with sensor owners and expose
these sensors to the Web. Extended Service Providers are in charge to create added
value from the received sensor data and embed most of the intelligence of the entire
service model. The last layer is the one of Sensor Data Consumers. This layer gathers all
stakeholders (governments, companies, academic institutions, etc.) that have registered
themselves to an authority and obtained a valid certificate to consume sensor data.
They must not directly communicate with sensors but rather take advantage of the
features provided by Extended Service Providers. For instance, an application should
never query hundreds of sensors nor perform expensive data processing tasks. Instead,
it should rely on the Extended Service Providers layer, which may reduce the cost of
data acquisition or select more suitable sensors that meet consumer needs. We believe
that the S2aaS model is relevant to formalize responsibilities regarding the observation
chain. As such, it could be widely applied to Sensor Webs to improve SLA meeting
and guarantee QoO constraints. While most of the layers previously described already
exist (e.g., IoT platforms can be seen as Extended Service Providers), this model may help
to clarify the different roles and responsibilities of the different stakeholders and entities
in sensor-based systems. Finally, it is worth pointing out that this model also considers
the notion of trust and security by considering an authority able to issue certificates.

• Blockchain The term “blockchain” refers to a distributed storage technology that does not
rely on a central control entity. As a consequence, a blockchain is shared between all
the nodes that belong to a same blockchain network. It is considered as a transparent
and secured technology since any node of the network can verify the chain integrity and
validity. A blockchain records the list of all transactions that have been performed since
its creation. These transactions are grouped within blocks that depend on one another.

159

All together, these blocks form a linked-list block chain. All newly inserted transactions
need to be validated by a certain number of nodes, often called miners. In order to
validate a transaction, each miner must generally perform a “proof of work” that consists
in a high-consuming computation task (e.g., a cryptographic task) and involves to verify
the last transaction according to all previous ones (i.e., the chain integrity). Subject
to a high concurrency between miners, blockchain enables consensus and prevents
fraudulent transactions to be validated. Beyond obvious financial applications, many
researchers have started to investigate how blockchain could be used to address some
IoT-related challenges [160]. Indeed, as an application-agnostic technology, blockchain
is, before anything else, a distributed way to record, share and even process data. As
observation uncertainty is still considered as a challenging issue within Sensor Webs,
we strongly believe that sensors themselves should assess some QoO aspects. For
instance, we could imagine that an observation should be verified by a certain number
of sensors before being allowed to be reported to a Sensor Web. In order to perform such
verification, the involved sensors should share some common characteristics with the
original observation producer (sensor type, geographic location for physical sensors,
topic sensed, etc.). These common characteristics could be a possible guarantee of
the sensor expertise for assessing some aspects of Data Quality such as accuracy or
trust for instance. Thus, one or many blockchains should be used to store all verified
observations. This process to delegate a part of QoO assessment to the sensor collection
network could avoid many erroneous observations to be reported to the Sensor Web
in the first place. Nevertheless, it is clear that such disruptive technology also brings
its share of new challenges regarding energy consumption, observation history length,
trusted sensors, etc.

• Mobile Edge Computing Edge computing refers to the ability of a system to process obser-
vations closer from data sources in order to improve the overall consumer experience.
Indeed, moving observation processing to the edge reduces E2E latency, enables con-
textual processing and improves both scalability and lifespans of IoT devices. Edge
computing appears as a key technology towards the fifth generation of mobile net-
works (5G). Applied to cellular networks, edge computing is referred as Mobile Edge
Computing (MEC). Overall, the vast majority of MEC use cases involves offloading (the
fact to delegate more tasks to end devices), content transformation or Big Data analyt-
ics [161]. As a consequence, MEC could be a good fit to address several QoO-related
requirements that we considered in this thesis. For instance, it could be used to improve:

• Scalability: by reducing the number of observations effectively sent to Sensor
Webs, MEC could mitigate the traffic load within the backbone network and in-
crease Sensor Web scalability. To achieve this, some gateways could be used as
proxies between sensors and Sensor Webs. They could be configured to perform
fusion or to only forward observations in case of major changes.

• Response time: by decentralizing the observation processing, MEC could save
numerous round-trip communications between producers, consumers and Sensor
Webs. When possible, caching at the edge should be enabled to provision content

160

according to popularity and demand. This could drastically reduce E2E latency
and, therefore, increase overall QoO from a consumer’s viewpoint.

• Interoperability: when known in advance, sensors and gateways could adapt
observation formatting/encoding to the Sensor Webs to which they are connected
to. Of course, this requires that the entity in charge of the transformation should be
able to retrieve and understand the schema used by the different Sensor Webs (with
the help of a common schema registry for instance).

Here as well, numerous challenges need to be addressed to truly take advantage of edge
computing in IoT applications. Biggest issues are linked to the communication over
wireless and mobile links, leading to unstable and intermittent connections between
the different devices, or between devices and gateways. In this case, challenges to be
addressed may be very similar to the ones raised by the DTN paradigm. Moreover, many
security challenges remain in order to secure communications while ensuring privacy.
Finally, data distribution among edge nodes of the network is also challenging and
require to consider many parameters as well as node capabilities.

6.2.4 QoO Considerations Regarding the Forthcoming IoE

In a near future, we foresee that recent sensor-related paradigms such as the IoT and the IoE
will keep stimulating research about QoO and Sensor Webs. In the meantime, researchers
should be able to take advantage of the latest advances in software and technology to propose
more efficient ways to control and disseminate information in a consumer-specific fashion.
The challenge is considerable as providing QoO guarantees is an ambitious task that depends
on many parameters including the software products used and their configuration.

To really achieve the IoE vision, we believe that there is still much way to go. Beyond tech-
nical issues, QoO-related challenges may enable to rethink added-value services, governance,
security, privacy and trust. In the end, it is likely that large IoE adoption by the general public
will depend on these principal matters.

161

This page was intentionally left blank.

Appendix A
OGC SWE 2.0 Specifications

OGC Sensor Web Enablement 2.0

Encoding
Specifications

Web Service
Specifications

SWE Common

SensorML

Observations & Measurements (O&M)

Sensor Observation Service (SOS)

Sensor Planning Service (SPS)

Web Notification Service (WNS)

Sensor Alert Service (SAS)

• SWE Common specifies the common vocabulary used in all other SWE specifications.
These definitions encompass data types, parameters and characteristics. Support for
“simple quality information” is also mentioned.

• SensorML specifies models and XML encoding to describe sensing process and pro-
cesses used to derive higher-level information from observations. SensorML allows to
model a sensor as a process that converts a real phenomenon into an observation.

• Observations & Measurements (O&M) specifically address how to model and represent
observation, with a clear separation between observations and their features of interest.

• Sensor Observation Service (SOS) specifies a standard web service interface to retrieve
sensor observations. This component enables both the “discovery” and the “access”
capabilities of Sensor Webs.

• Sensor Planning Service (SPS) specifies a standard web service interface to allow a user
to submit tasks to sensors or request specific observations from them. This component
enables the “tasking” capability of Sensor Webs.

• Sensor Alert Service (SAS) specifies web service interface to publish and subscribe to
alerts from sensors. This component enables the “alerting” capability.

• Web Notification Service (WNS) specifies a web service interface for asynchronous
message delivery (“eventing” capability) that can be enforced within other SWE web
services.

163

Appendix B
Legend for the Surveyed Sensor Webs

Here are the abbreviations used to summarize the different features of the surveyed Sensor
Web solutions in Table 2.3:

Column name Features

(4) Observation levels supported
Raw Data (RD)
Information (I)
Knowledge (K)

(5) Standard-compliant
Standardized solution (X)
Partially standardized solution (v)

(6) Semantic sensor description Possible (X)

(7) Quality dimensions considered
Network QoS (QoS)
Context (Cont)
QoI (QoI)

(8)
Semantic observation annotation and/or rea-
soning

Possible (X)

(9) Possible QoO mechanisms

Caching (Cach)
Fusion (Fu)
Formatting (Form)
Filtering (Filt)
Prediction (Pred)

(10) Adaptation control loop Yes (X)

(11) Autonomic maturity level

Basic (1)
Managed (2)
Predictive (3)
Adaptive (4)
Autonomic (5)

164

Appendix C
ISO/IEC/IEEE 42010 Standard - Terms
and Concepts

Source: [126]

165

Appendix D
Observations Delivered by the iQAS
Platform

1 {
2 " date " : 1500364730089 ,
3 " value " : 4 . 276 ,
4 "producer" : " sensor01" ,
5 "timestamps" : "produced : 1500364730089 ; iQAS_in : 1500364730543 ; iQAS_out : 15003

64730664" ,
6 " qoOAttributeValues " : {
7 "OBS_ACCURACY" : "100 . 0" ,
8 "OBS_FRESHNESS" : "575 . 0"
9 }

10 }

Listing D.1 – Raw Data observation

1 {
2 " date " : 1500364775129 ,
3 " value " : −7 . 29 ,
4 "producer" : " sensor01" ,
5 "timestamps" : "produced : 1500364775129 ; iQAS_in : 1500364775531 ; iQAS_out : 1500364

776021" ,
6 " qoOAttributeValues " : {
7 "OBS_ACCURACY" : "100 . 0" ,
8 "OBS_FRESHNESS" : "892 . 0"
9 } ,

10 " sensorContext " : {
11 " l a t i t u d e " : "43 . 53101809" ,
12 " longitude " : "1 . 40158296" ,
13 " a l t i t u d e " : "152" ,
14 " relat iveLocation " : "Chullanka − Portet−sur−Garonne" ,
15 " topic " : "temperature"

166

16 }
17 }

Listing D.2 – Information observation

1 { "obs" : [
2 {
3 "@id" : " http : // isae . f r / iqas /qoo−ontology#accuracyKind" ,
4 "@type" : " http : // purl . org / i o t /vocab/m3− l i t e #Others "
5 } ,
6 {
7 "@id" : " http : // isae . f r / iqas /qoo−ontology#accuracyUnit " ,
8 "@type" : " http : // purl . org / i o t /vocab/m3− l i t e #Percent "
9 } ,

10 {
11 "@id" : " http : // isae . f r / iqas /qoo−ontology#freshnessKind " ,
12 "@type" : " http : // purl . org / i o t /vocab/m3− l i t e #Others "
13 } ,
14 {
15 "@id" : " http : // isae . f r / iqas /qoo−ontology#freshnessUnit " ,
16 "@type" : " http : // purl . org / i o t /vocab/m3− l i t e #Millisecond "
17 } ,
18 {
19 "@id" : " http : // isae . f r / iqas /qoo−ontology# location " ,
20 "@type" : " http : //www.w3 . org /2003/01/geo/wgs84_pos#Point " ,
21 " a l t " : "152" ,
22 " a l t R e l a t i v e " : "0" ,
23 " l a t " : "43 . 53101809" ,
24 " long " : "1 . 40158296" ,
25 " relat iveLocation " : "Chullanka − Portet−sur−Garonne"
26 } ,
27 {
28 "@id" : " http : // isae . f r / iqas /qoo−ontology#obs" ,
29 "@type" : " http : // purl . oclc . org /NET/ ssnx / ssn#Observation " ,
30 " featureOfInterest " : " http : // isae . f r / iqas /qoo−ontology#publicLocations " ,
31 " observationResult " : " http : // isae . f r / iqas /qoo−ontology#sensorOutput" ,
32 "observedBy" : " http : // isae . f r / iqas /qoo−ontology#sensor01" ,
33 " observedProperty " : " http : // isae . f r / iqas /qoo−ontology#temperature"
34 } ,
35 {
36 "@id" : " http : // isae . f r / iqas /qoo−ontology#obsValue" ,
37 "@type" : " http : // purl . oclc . org /NET/ ssnx / ssn#ObservationValue " ,
38 "hasQoO" : " http : // isae . f r / iqas /qoo−ontology# qooAttr ibutesList " ,
39 " hasQuantityKind " : " http : // purl . org / i o t /vocab/m3− l i t e #Temperature" ,
40 "hasUnit" : " http : // purl . org / i o t /vocab/m3− l i t e #DegreeCelsius " ,
41 "obsDateValue" : "2017−07−18 10 : 00 : 00 . 147" ,
42 " obsLevelValue " : "KNOWLEDGE" ,
43 " obsStrValue " : "9 . 383" ,
44 "obsTimestampsValue" : "produced : 1500364800147 ; iQAS_in : 1500364800313 ;

167

iQAS_out : 1500364800645"
45 } ,
46 {
47 "@id" : " http : // isae . f r / iqas /qoo−ontology# qooAttr ibutesList " ,
48 "@type" : " rdf : Seq" ,
49 "_1" : " http : // isae . f r / iqas /qoo−ontology#qooIntrinsic_OBS_ACCURACY" ,
50 "_2" : " http : // isae . f r / iqas /qoo−ontology#qooIntrinsic_OBS_FRESHNESS"
51 } ,
52 {
53 "@id" : " http : // isae . f r / iqas /qoo−ontology#qooIntrinsic_OBS_ACCURACY" ,
54 "@type" : " http : // isae . f r / iqas /qoo−ontology#QoOIntrisicQuality " ,
55 "hasQoOValue" : " http : // isae . f r / iqas /qoo−ontology#qooValue_OBS_ACCURACY" ,
56 " isAbout " : "OBS_ACCURACY"
57 } ,
58 {
59 "@id" : " http : // isae . f r / iqas /qoo−ontology#qooIntrinsic_OBS_FRESHNESS" ,
60 "@type" : " http : // isae . f r / iqas /qoo−ontology#QoOIntrisicQuality " ,
61 "hasQoOValue" : " http : // isae . f r / iqas /qoo−ontology#qooValue_OBS_FRESHNESS" ,
62 " isAbout " : "OBS_FRESHNESS"
63 } ,
64 {
65 "@id" : " http : // isae . f r / iqas /qoo−ontology#qooValue_OBS_ACCURACY" ,
66 "@type" : " http : // isae . f r / iqas /qoo−ontology#QoOValue" ,
67 " hasQuantityKind " : " http : // isae . f r / iqas /qoo−ontology#accuracyKind" ,
68 "hasUnit" : " http : // isae . f r / iqas /qoo−ontology#accuracyUnit " ,
69 " qooStrValue " : "100 . 0"
70 } ,
71 {
72 "@id" : " http : // isae . f r / iqas /qoo−ontology#qooValue_OBS_FRESHNESS" ,
73 "@type" : " http : // isae . f r / iqas /qoo−ontology#QoOValue" ,
74 " hasQuantityKind " : " http : // isae . f r / iqas /qoo−ontology#freshnessKind " ,
75 "hasUnit" : " http : // isae . f r / iqas /qoo−ontology#freshnessUnit " ,
76 " qooStrValue " : "497 . 0"
77 } ,
78 {
79 "@id" : " http : // isae . f r / iqas /qoo−ontology#sensor01" ,
80 "@type" : " http : // purl . oclc . org /NET/ ssnx / ssn#Sensor" ,
81 " location " : " http : // isae . f r / iqas /qoo−ontology# location "
82 } ,
83 {
84 "@id" : " http : // isae . f r / iqas /qoo−ontology#sensorOutput" ,
85 "@type" : " http : // purl . oclc . org /NET/ ssnx / ssn#SensorOutput" ,
86 "hasValue" : " http : // isae . f r / iqas /qoo−ontology#obsValue"
87 }
88] }

Listing D.3 – Knowledge observation

168

References

[1] A. Auger, E. Exposito, and E. Lochin. Survey on Quality of Observation within Sensor
Web Systems. IET Wireless Sensor Systems, 7:163–177(14), December 2017. ISSN 2043-
6386. URL http://dx.doi.org/10.1049/iet-wss.2017.0008. (Cited on page 152.)

[2] A. Auger, E. Exposito, and E. Lochin. Towards the Internet of Everything: Deployment
Scenarios for a QoO-aware Integration Platform. In IEEE 4th World Forum on Internet of
Things (WF-IoT 2018), pages 504–509, Singapore, Singapore, 2018. (Cited on page 152.)

[3] A. Auger, E. Exposito, and E. Lochin. Sensor Observation Streams Within Cloud-based
IoT Platforms: Challenges and Directions. In 20th ICIN Conference Innovations in
Clouds, Internet and Networks, pages 177–184, Paris, FR, 2017. URL https://doi.org/
10.1109/ICIN.2017.7899407. (Cited on page 152.)

[4] A. Auger, E. Exposito, and E. Lochin. iQAS: an Integration Platform for QoI Assessment
as a Service for Smart Cities. In IEEE 3rd World Forum on Internet of Things (WF-IoT
2016), pages 88–93, Reston, VA, USA, 2017. URL https://doi.org/10.1109/WF-IoT.
2016.7845400. (Cited on pages 82 and 152.)

[5] A. Auger, E. Exposito, and E. Lochin. A Generic Framework for Quality-based Autonomic
Adaptation within Sensor-based Systems. In Service-Oriented Computing – ICSOC 2016
Workshops: ASOCA, ISyCC, BSCI, and Satellite Events, pages 21–32, Banff, AB, Canada,
2017. Springer. URL https://doi.org/10.1007/978-3-319-68136-8_2. (Cited on
page 152.)

[6] A. Auger, G. Baudic, V. Ramiro, and E. Lochin. Using the HINT Network Emulator
to Develop Opportunistic Applications: Demo. In Proceedings of the Eleventh ACM
Workshop on Challenged Networks, CHANTS ’16, pages 35–36, New York City, NY, USA,
2016. ACM. URL http://doi.acm.org/10.1145/2979683.2979699. (Cited on pages
141 and 142.)

[7] G. Baudic, A. Auger, V. Ramiro, and E. Lochin. HINT: From Network Characterization to
Opportunistic Applications. In Proceedings of the Eleventh ACM Workshop on Challenged

169

http://dx.doi.org/10.1049/iet-wss.2017.0008
https://doi.org/10.1109/ICIN.2017.7899407
https://doi.org/10.1109/ICIN.2017.7899407
https://doi.org/10.1109/WF-IoT.2016.7845400
https://doi.org/10.1109/WF-IoT.2016.7845400
https://doi.org/10.1007/978-3-319-68136-8_2
http://doi.acm.org/10.1145/2979683.2979699

Networks, CHANTS ’16, pages 13–18, New York City, NY, USA, 2016. ACM. URL http:
//doi.acm.org/10.1145/2979683.2979694. (Cited on page 141.)

[8] A. Bröring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch, S. Liang, and R. Lem-
mens. New Generation Sensor Web Enablement. Sensors, 11(3):2652–2699, 2011. (Cited
on pages 2, 3, 8, 17, 25, 35, 38, 46, and 83.)

[9] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Computer Networks,
54(15):2787–2805, October 2010. (Cited on pages 2 and 3.)

[10] L. Atzori, A. Iera, and G. Morabito. Understanding the Internet of Things: definition,
potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56:122–140,
March 2017. (Cited on pages 2, 3, 8, and 123.)

[11] K. A. Delin, S. P. Jackson, and R. R. Some. Sensor Webs, volume 23 of NASA Tech Brief.
October 1999. (Cited on pages 3 and 17.)

[12] K. Ashton. That ’Internet of Things’ Thing. RFiD Journal, 22(7), 2011. (Cited on page 3.)

[13] P. Mell and T. Grance. The NIST definition of Cloud Computing. 2011. (Cited on pages 4
and 22.)

[14] S. Patidar, D. Rane, and P. Jain. A Survey Paper on Cloud Computing. In Advanced Com-
puting & Communication Technologies (ACCT), 2012 Second International Conference
on, pages 394–398. IEEE, 2012. (Cited on pages 4 and 22.)

[15] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Sensing as a Service Model
for Smart Cities supported by Internet of Things. Transactions on Emerging Telecommu-
nications Technologies, 25(1):81–93, 2014. (Cited on pages 4 and 22.)

[16] G. Cugola and A. Margara. Processing flows of information: From data stream to
Complex Event Processing. ACM Computing Surveys (CSUR), 44(3):15, 2012. (Cited on
pages 4 and 7.)

[17] A. B. Bondi. Characteristics of Scalability and Their Impact on Performance. In Proceed-
ings of the 2Nd International Workshop on Software and Performance, WOSP ’00, New
York, NY, USA, 2000. ACM. (Cited on page 5.)

[18] P. Barnaghi, M. Bermudez-Edo, and R. Tönjes. Challenges for Quality of Data in Smart
Cities. J. Data and Information Quality, 6(2-3):6:1–6:4, June 2015. (Cited on pages 6, 26,
and 134.)

[19] D. J. Peuquet. It’s About Time: A Conceptual Framework for the Representation of
Temporal Dynamics in Geographic Information Systems. Annals of the Association of
American Geographers, 84(3):441–461, September 1994. (Cited on page 6.)

170

http://doi.acm.org/10.1145/2979683.2979694
http://doi.acm.org/10.1145/2979683.2979694

[20] J. W. Branch, J. S. Davis, D. M. Sow, C. Bisdikian, and others. Sentire: A framework for
building middleware for sensor and actuator networks. In Pervasive Computing and
Communications Workshops, 2005. PerCom 2005 Workshops. Third IEEE International
Conference on, pages 396–400. IEEE, 2005. (Cited on pages 6 and 29.)

[21] L.-J. Zhang, J. Zhang, and H. Cai. Service-Oriented Architecture. Services Computing,
pages 89–113, 2007. (Cited on page 7.)

[22] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE intelligent systems,
16(2):46–53, 2001. (Cited on page 7.)

[23] E. Y. Song and K. B. Lee. Sensor Network based on IEEE 1451.0 and IEEE p1451. 2-RS232.
In Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC
2008. IEEE, pages 1728–1733. IEEE, 2008. (Cited on page 7.)

[24] D. Moodley and I. Simonis. A New Architecture for the Sensor Web: The SWAP Frame-
work. In Proceedings of 5th International Semantic Web Conference (ISWC 2006), volume
LNCS 4273, Athens, GA, USA, 2006. (Cited on pages 8, 9, 17, 34, and 38.)

[25] S. Ramalingam and L. Mohandas. A Fuzzy Based Sensor Web for Adaptive Prediction
Framework to Enhance the Availability of Web Service. International Journal of Dis-
tributed Sensor Networks, 12(2), 2016. (Cited on pages 8, 17, 38, and 39.)

[26] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. M. S. d. Souza, and V. Trifa.
SOA-Based Integration of the Internet of Things in Enterprise Services. In 2009 IEEE
International Conference on Web Services, pages 968–975, July 2009. (Cited on page 9.)

[27] Y. S. Chen and Y. R. Chen. Context-Oriented Data Acquisition and Integration Platform
for Internet of Things. In 2012 Conference on Technologies and Applications of Artificial
Intelligence, pages 103–108, November 2012. (Cited on page 9.)

[28] G. Yang, L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. D. Xu, S. Kao-Walter, Q. Chen, and
L. R. Zheng. A Health-IoT Platform Based on the Integration of Intelligent Packaging,
Unobtrusive Bio-Sensor, and Intelligent Medicine Box. IEEE Transactions on Industrial
Informatics, 10(4):2180–2191, November 2014. (Cited on page 9.)

[29] D. Carr. The SIXTH Middleware: sensible sensing for the sensor web. PhD thesis, University
College Dublin, 2015. (Cited on pages 9, 37, 38, 83, and 91.)

[30] J. Bosch. Design Patterns as Language Constucts. 1996. (Cited on page 9.)

[31] A. Sheth, C. Henson, and S. Sahoo. Semantic Sensor Web. IEEE Internet Computing, 12
(4):78–83, July 2008. (Cited on pages 9, 20, and 46.)

[32] X. Wang, X. Zhang, and M. Li. A Survey on Semantic Sensor Web: Sensor Ontology,
Mapping and Query. International Journal of u-and e-Service, Science and Technology, 8
(10):325–342, 2015. (Cited on page 9.)

171

[33] M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog, and others. The SSN ontology of the W3C semantic
sensor network incubator group. Web semantics: science, services and agents on the
World Wide Web, 17:25–32, 2012. (Cited on pages 9, 21, 26, 28, 60, and 61.)

[34] International Organization for Standardization. Data quality – Part 140: Master data:
Exchange of characteristic data: Completeness, 2016. URL https://www.iso.org/
standard/62395.html. Retrieved: 14/12/2017. (Cited on pages 9 and 25.)

[35] Open Geospatial Consortium (OGC). SWE Common Data Model Encoding Standard,
2011. URL http://www.opengeospatial.org/standards/swecommon. Retrieved:
14/12/2017. (Cited on pages 9 and 25.)

[36] International Organization for Standardization. Geographic information – Data quality,
2013. URL https://www.iso.org/standard/32575.html. Retrieved: 14/12/2017.
(Cited on pages 9 and 25.)

[37] D. Puiu, P. Barnaghi, R. Tönjes, and others. CityPulse: Large Scale Data Analytics
Framework for Smart Cities. IEEE Access, 4:1086–1108, 2016. (Cited on pages 9, 22, 25,
37, 38, 39, 41, and 83.)

[38] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context Aware Computing
for The Internet of Things: A Survey. IEEE Communications Surveys Tutorials, 16(1):
414–454, 2014. (Cited on pages 9 and 23.)

[39] A. K. Dey. Understanding and using context. Personal and ubiquitous computing, 5(1):
4–7, 2001. (Cited on pages 9 and 23.)

[40] T. Buchholz, A. Küpper, and M. Schiffers. Quality of Context: What It Is And Why We
Need It. In Proceedings of the 10th HP–OVUA Workshop, volume 2003, 2003. (Cited on
pages 9 and 24.)

[41] K. Sheikh, M. Wegdam, and M. van Sinderen. Middleware Support for Quality of Context
in Pervasive Context-Aware Systems. In Fifth Annual IEEE International Conference on
Pervasive Computing and Communications Workshops, 2007. PerCom Workshops ’07,
pages 461–466, March 2007. (Cited on page 9.)

[42] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer, 36(1):
41–50, 2003. (Cited on pages 9 and 30.)

[43] G. M. Lohman and S. S. Lightstone. SMART: Making DB2 (More) Autonomic. In Pro-
ceedings of the 28th International Conference on Very Large Data Bases, VLDB ’02, pages
877–879, Hong Kong, China, 2002. VLDB Endowment. (Cited on page 10.)

[44] C. Diop. An autonomic service bus for service-based distributed systems. PhD thesis, 2015.
(Cited on pages 10, 32, 147, and 158.)

172

https://www.iso.org/standard/62395.html
https://www.iso.org/standard/62395.html
http://www.opengeospatial.org/standards/swecommon
https://www.iso.org/standard/32575.html

[45] M. Ben Alaya. Towards interoperability, self-management, and scalability for machine-
to-machine systems. PhD thesis, 2015. (Cited on pages 10 and 32.)

[46] E. Mezghani. Towards Autonomic and Cognitive IoT Systems, Application to Patients’
Treatments Management. PhD thesis, 2016. (Cited on pages 10 and 32.)

[47] M. A. Hossain, J. H. Abawajy, R. García-Castro, W.-H. Cheng, and D. T. Ahmed. Sensor-
Web Systems, Applications, and Services. International Journal of Distributed Sensor
Networks, 12(4), April 2016. (Cited on page 17.)

[48] ISO/IEC/IEEE. ISO/IEC/IEEE 42010: Frequently Asked Questions, 2013. URL http:
//www.iso-architecture.org/42010/faq.html. Retrieved: 14/12/2017. (Cited on
page 18.)

[49] ITU-T. Y.2060: Overview of the Internet of things. International Telecommunication
Union-Telecommunication Standardisation Sector (ITU-T), June 2012. (Cited on pages
18 and 79.)

[50] ITU-T. Y.2068: Functional framework and capabilities of the Internet of things. Interna-
tional Telecommunication Union-Telecommunication Standardisation Sector (ITU-T),
March 2015. (Cited on pages 18, 46, and 79.)

[51] ETSI. Standards for the Internet of Things, 2017. URL http://www.etsi.
org/technologies-clusters/technologies/internet-of-things. Retrieved:
14/12/2017. (Cited on page 18.)

[52] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. Van Kranenburg, S. Lange, and S. Meissner.
Enabling Things to Talk. Springer, 2016. (Cited on pages 18, 29, and 46.)

[53] J. Miller, J. Mukerji, M. Belaunde, and others. MDA guide. Object Management Group,
2003. (Cited on pages 18, 46, and 89.)

[54] J. Green. The Internet of Things Reference Model. In Internet of Things World Fo-
rum (IoTWF) White Paper, 2014. URL http://cdn.iotwf.com/resources/71/IoT_
Reference_Model_White_Paper_June_4_2014.pdf. Retrieved: 14/12/2017. (Cited
on pages 19 and 46.)

[55] J. Bradley, C. Reberger, A. Dixit, and V. Gupta. Internet of Everything: A
$4.6 Trillion Public-Sector Opportunity. White Paper, Cisco, 2013. URL
http://internetofeverything.cisco.com/sites/default/files/docs/
en/ioe_public_sector_vas_white%20paper_121913final.pdf. Retrieved:
14/12/2017. (Cited on pages 19, 122, and 123.)

[56] T. Berners-Lee, J. Hendler, O. Lassila, and others. The Semantic Web. Scientific american,
284(5):28–37, 2001. (Cited on pages 19 and 93.)

[57] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data-the story so far. Semantic Services,
Interoperability and Web Applications: Emerging Concepts, pages 205–227, 2009. (Cited
on pages 19, 36, and 93.)

173

http://www.iso-architecture.org/42010/faq.html
http://www.iso-architecture.org/42010/faq.html
http://www.etsi.org/technologies-clusters/technologies/internet-of-things
http://www.etsi.org/technologies-clusters/technologies/internet-of-things
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
http://internetofeverything.cisco.com/sites/default/files/docs/en/ioe_public_sector_vas_white%20paper_121913final.pdf
http://internetofeverything.cisco.com/sites/default/files/docs/en/ioe_public_sector_vas_white%20paper_121913final.pdf

[58] M. Botts, G. Percivall, C. Reed, and J. Davidson. OGC® sensor web enablement: Overview
and high level architecture. In GeoSensor networks, pages 175–190. Springer, 2006. (Cited
on page 20.)

[59] A. Sheth. Internet of Things to Smart IoT Through Semantic, Cognitive, and Perceptual
Computing. IEEE Intelligent Systems, 31(2):108–112, March 2016. (Cited on pages 20
and 57.)

[60] R. Eastman, C. Schlenoff, S. Balakirsky, and T. Hong. A Sensor Ontology Literature Review.
Technical Report NIST IR 7908, National Institute of Standards and Technology, April
2013. URL http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7908.pdf. Re-
trieved: 14/12/2017. (Cited on page 20.)

[61] A. Bröring, K. Janowicz, C. Stasch, and W. Kuhn. Semantic Challenges for Sensor Plug and
Play. In Web and Wireless Geographical Information Systems, number 5886 in Lecture
Notes in Computer Science, pages 72–86. Springer Berlin Heidelberg, December 2009.
(Cited on pages 21 and 46.)

[62] C. Henson, J. K. Pschorr, A. P. Sheth, K. Thirunarayan, and others. SemSOS: Semantic
sensor observation service. In Collaborative Technologies and Systems, 2009. CTS’09.
International Symposium on, pages 44–53. IEEE, 2009. (Cited on pages 21, 25, 28,
and 46.)

[63] A. Bröring, P. Maué, K. Janowicz, D. Nüst, and C. Malewski. Semantically-Enabled Sensor
Plug & Play for the Sensor Web. Sensors, 11(8):7568–7605, August 2011. (Cited on pages
21 and 46.)

[64] W3C SSN Incubator Group. Review of Sensor and Observations Ontologies,
2011. URL https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_
and_Observations_Ontologies. Retrieved: 14/12/2017. (Cited on page 21.)

[65] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Comput. Surv., 35(2):114–131, 2003. (Cited on pages 22, 66, and 92.)

[66] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Huberman, J. Manley, C. Patel, P. Ran-
ganathan, and A. Veitch. Everything as a Service: Powering the New Information Econ-
omy. Computer, (3):36–43, 2011. (Cited on page 22.)

[67] C. Perera. Sensing as a Service for Internet of Things: A Roadmap. Leanpub, February
2017. (Cited on pages 22, 123, and 159.)

[68] Amazon Web Services. AWS IoT. URL https://aws.amazon.com/iot. Retrieved:
14/12/2017. (Cited on page 22.)

[69] IBM. Watson IoT. URL https://internetofthings.ibmcloud.com. Retrieved:
14/12/2017. (Cited on page 22.)

174

http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7908.pdf
https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies
https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies
https://aws.amazon.com/iot
https://internetofthings.ibmcloud.com

[70] FP7 OpenIoT Project. URL http://www.openiot.eu/. Retrieved: 14/12/2017. (Cited
on pages 22, 26, and 28.)

[71] ITU-T. E.800: Definitions of terms related to quality of service. International Telecom-
munication Union-Telecommunication Standardisation Sector (ITU-T), September 2008.
(Cited on page 23.)

[72] ITU-T. X.641: Information technology – Quality of Service: Framework. International
Telecommunication Union-Telecommunication Standardisation Sector (ITU-T), Decem-
ber 1997. (Cited on page 23.)

[73] Y. Wand and R. Y. Wang. Anchoring Data Quality Dimensions in Ontological Foundations.
Commun. ACM, 39(11):86–95, November 1996. ISSN 0001-0782. (Cited on page 23.)

[74] R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality means to data
consumers. Journal of management information systems, pages 5–33, 1996. (Cited on
page 23.)

[75] A. Ranganathan and R. H. Campbell. A Middleware for Context-Aware Agents in Ubiq-
uitous Computing Environments. In ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing, pages 143–161, Rio de
Janeiro, Brazil, June 2003. Springer. (Cited on pages 23, 33, and 38.)

[76] D. Ejigu, M. Scuturici, and L. Brunie. Semantic Approach to Context Management and
Reasoning in Ubiquitous Context-Aware Systems. In 2nd International Conference on
Digital Information Management, 2007. ICDIM ’07, volume 1, pages 500–505, October
2007. (Cited on page 23.)

[77] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini. A Survey of Context Data Distribution
for Mobile Ubiquitous Systems. ACM Computing Surveys (CSUR), 44(4):24, 2012. (Cited
on page 23.)

[78] S. Chabridon, D. Conan, Z. Abid, and C. Taconet. Building ubiquitous QoC-aware appli-
cations through model-driven software engineering. Science of Computer Programming,
78(10):1912–1929, 2013. (Cited on page 23.)

[79] C. Bisdikian, J. Branch, K. Leung, and R. Young. A Letter Soup for the Quality of Informa-
tion in Sensor Networks. In IEEE International Conference on Pervasive Computing and
Communications, 2009. PerCom 2009, pages 1–6, March 2009. (Cited on page 24.)

[80] N. Suri, G. Benincasa, R. Lenzi, M. Tortonesi, C. Stefanelli, and L. Sadler. Exploring Value-
of-Information-Based Approaches to Support Effective Communications in Tactical
Networks. IEEE Communications Magazine, 53(10):39–45, October 2015. (Cited on page
24.)

[81] L. Rao and K.-M. Osei-Bryson. Towards defining dimensions of knowledge systems
quality. Expert Systems with Applications, 33(2):368–378, 2007. (Cited on page 24.)

175

http://www.openiot.eu/

[82] M. Williams, D. Cornford, L. Bastin, and E. Pebesma. Uncertainty Markup Lan-
guage (UncertML). OpenGIS Discussion Paper, OGC, 2009. URL http://portal.
opengeospatial.org/files/?artifact_id=33234. Retrieved: 14/12/2017. (Cited
on page 25.)

[83] A. Klein and W. Lehner. Representing Data Quality in Sensor Data Streaming Environ-
ments. J. Data and Information Quality, 1(2):10:1–10:28, September 2009. (Cited on
page 26.)

[84] C. Bisdikian, L. M. Kaplan, and M. B. Srivastava. On the Quality and Value of Information
in Sensor Networks. ACM Trans. Sen. Netw., 9(4):48:1–48:26, July 2013. (Cited on page
26.)

[85] From High-Level Smart City Scenario Requirements to Key Performance Indicators
(KPIs) for Smart City Frameworks. Technical report, EU FP7 CityPulse, 2015. URL
http://iot.ee.surrey.ac.uk:8080/eval.html. Retrieved: 14/12/2017. (Cited on
page 26.)

[86] D. E. Galarus and R. A. Angryk. Spatio-temporal quality control: implications and
applications for data consumers and aggregators. Open Geospatial Data, Software and
Standards, 1(1):2, December 2016. (Cited on page 26.)

[87] S. De, P. Barnaghi, M. Bauer, and S. Meissner. Service modelling for the Internet of Things.
In Computer Science and Information Systems (FedCSIS), 2011 Federated Conference on,
pages 949–955. IEEE, 2011. (Cited on pages 26 and 28.)

[88] W. Wang, S. De, R. Toenjes, E. Reetz, and K. Moessner. A Comprehensive Ontology for
Knowledge Representation in the Internet of Things. In Trust, Security and Privacy in
Computing and Communications (TrustCom), 2012 IEEE 11th International Conference
on, pages 1793–1798. IEEE, 2012. (Cited on pages 26 and 28.)

[89] S. Kim, H. Bang, D. Park, and Y. Lee. A semantic approach for providing open USN ser-
vices. In Technology Management in the IT-Driven Services (PICMET), 2013 Proceedings
of PICMET’13:, pages 1427–1436. IEEE, 2013. (Cited on pages 27 and 28.)

[90] S. Kolozali, M. Bermudez-Edo, D. Puschmann, F. Ganz, and P. Barnaghi. A Knowledge-
Based Approach for Real-Time IoT Data Stream Annotation and Processing. In Internet
of Things (iThings), 2014 IEEE International Conference on, and Green Computing and
Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CP-
SCom), IEEE, pages 215–222. IEEE, 2014. (Cited on pages 27 and 28.)

[91] R. Verdone, D. Dardari, G. Mazzini, and A. Conti. Wireless Sensor and Actuator Networks:
Technologies, Analysis and Design. Academic Press, 2010. (Cited on page 29.)

[92] L. Golab and M. T. Özsu. Issues in Data Stream Management. SIGMOD Rec., 32(2):5–14,
June 2003. (Cited on page 29.)

176

http://portal.opengeospatial.org/files/?artifact_id=33234
http://portal.opengeospatial.org/files/?artifact_id=33234
http://iot.ee.surrey.ac.uk:8080/eval.html

[93] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS: Security Protocols for
Sensor Networks. Wirel. Netw., 8(5):521–534, September 2002. (Cited on page 29.)

[94] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles. Towards a
Better Understanding of Context and Context-Awareness. In Handheld and ubiquitous
computing, pages 304–307. Springer, 1999. (Cited on page 29.)

[95] M. Korkea-Aho. Context-Aware Applications Survey, 2000. URL http://www.cse.
tkk.fi/fi/opinnot/T-110.5190/2000/applications/context-aware.html. Re-
trieved: 14/12/2017. (Cited on page 30.)

[96] S. Meyer and A. Rakotonirainy. A Survey of Research on Context-aware Homes. In
Proceedings of the Australasian Information Security Workshop Conference on ACSW
Frontiers 2003 - Volume 21, ACSW Frontiers ’03, pages 159–168. Australian Computer
Society, Inc., 2003. (Cited on pages 30 and 144.)

[97] P. Marie, L. Lim, A. Manzoor, S. Chabridon, D. Conan, and T. Desprats. QoC-aware
context data distribution in the Internet of Things. In Proceedings of the 1st ACM
Workshop on Middleware for Context-Aware Applications in the IoT (M4IoT’14), pages
13–18, Bordeaux, France, December 2014. ACM. (Cited on pages 30, 36, and 38.)

[98] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F. Yassin. A Practical Guide to the IBM
Autonomic Computing Toolkit. IBM, International Technical Support Organization,
2004. (Cited on pages 30 and 31.)

[99] M. C. Huebscher and J. A. McCann. A Survey of Autonomic Computing—Degrees,
Models, and Applications. ACM Computing Surveys, 40(3):7:1–7:28, August 2008. (Cited
on page 30.)

[100] J. R. Boyd. The Essence of Winning and Losing. Unpublished lecture notes, 12(23):
123–125, 1996. (Cited on page 31.)

[101] P. Hu, J. Indulska, and R. Robinson. An Autonomic Context Management System for
Pervasive Computing. In Pervasive Computing and Communications, 2008. PerCom
2008. Sixth Annual IEEE International Conference on, pages 213–223, Hong Kong SAR,
China, March 2008. IEEE. (Cited on pages 32, 35, and 38.)

[102] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: an architecture for a
worldwide sensor Web. IEEE Pervasive Computing, 2(4):22–33, 2003. (Cited on pages 33
and 38.)

[103] G. Jiang, W. W. Chung, and G. Cybenko. Semantic agent technologies for tactical sensor
networks. In SPIE’s AeroSense 2003 (OR03), pages 311–320, Orlando, FL, USA, April 2003.
International Society for Optics and Photonics. (Cited on pages 33 and 38.)

[104] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, and M. D. Mickunas. Middle-
Where: A Middleware for Location Awareness in Ubiquitous Computing Applications.

177

http://www.cse.tkk.fi/fi/opinnot/T-110.5190/2000/applications/context-aware.html
http://www.cse.tkk.fi/fi/opinnot/T-110.5190/2000/applications/context-aware.html

In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware,
Middleware ’04, pages 397–416, Toronto, Canada, October 2004. Springer. (Cited on
pages 33 and 38.)

[105] I. Hwang, Q. Han, and A. Misra. MASTAQ: A middleware architecture for sensor ap-
plications with statistical quality constraints. In 3rd IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom 2005), pages 390–395,
Kauai Island, Hawaii, March 2005. IEEE. (Cited on pages 34 and 38.)

[106] K. Aberer, M. Hauswirth, and A. Salehi. Middleware support for the Internet of Things.
In Proceedings of 5. GI/ITG KuVS Fachgespraech-Drahtlose Sensornetze, pages 15–19,
Berlin, Germany, September 2006. (Cited on pages 34, 38, 83, and 157.)

[107] C. Jacob, D. Linner, S. Steglich, and I. Radusch. Bio-inspired Context Gathering in Loosely
Coupled Computing Environments. In Bio-Inspired Models of Network, Information
and Computing Systems, 2006. 1st, pages 1–6, York, UK, 2006. IEEE. (Cited on pages 34
and 38.)

[108] W. I. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao. SenseWeb: An Infrastructure for
Shared Sensing. IEEE multimedia, 14(4), 2007. (Cited on pages 34 and 38.)

[109] E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, A. Riabov, and F. Ye. A Semantics-Based
Middleware for Utilizing Heterogeneous Sensor Networks. In International Conference
on Distributed Computing in Sensor Systems (DCOSS’07), pages 174–188, Santa Fe, New
Mexico, USA, June 2007. Springer. (Cited on pages 34, 38, 39, and 41.)

[110] J. S. Kinnebrew, W. R. Otte, N. Shankaran, G. Biswas, and D. C. Schmidt. Intelligent
Resource Management and Dynamic Adaptation in a Distributed Real-time and Embed-
ded Sensor Web System. In Object/Component/Service-Oriented Real-Time Distributed
Computing, 2009. ISORC’09. IEEE International Symposium on, pages 135–142, Tokyo,
Japan, March 2009. IEEE. (Cited on pages 35 and 38.)

[111] M. Wieland, U.-P. Käppeler, P. Levi, F. Leymann, and D. Nicklas. Towards Integration
of Uncertain Sensor Data into Context-aware Workflows. In GI Jahrestagung, pages
2029–2040. Citeseer, 2009. (Cited on pages 35, 38, and 53.)

[112] M. Pathan, K. Taylor, and M. Compton. Semantics-based plug-and-play configuration
of sensor network services. In SSN’10 Proceedings of the 3rd International Conference on
Semantic Sensor Networks, volume 668, pages 17–32, Shanghai, China, October 2010.
CEUR-WS.org. (Cited on pages 35, 38, 39, and 41.)

[113] D. Romero, R. Rouvoy, L. Seinturier, S. Chabridon, D. Conan, and N. Pessemier. Enabling
Context-Aware Web Services: A Middleware Approach for Ubiquitous Environments. In
M. Sheng, J. Yu, and S. Dustdar, editors, Enabling Context-Aware Web Services: Methods,
Architectures, and Technologies, pages 113–135. Chapman and Hall/CRC, 2010. (Cited
on pages 35 and 38.)

178

[114] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas. Service Oriented Middleware for
the Internet of Things: A Perspective. In Towards a Service-Based Internet: 4th European
Conference, ServiceWave 2011. Proceedings, pages 220–229, Poznan, Poland, October
2011. Springer. (Cited on pages 35, 38, 39, and 41.)

[115] C. J. Matheus, A. Boran, D. Carr, and others. Semantic Network Monitoring and Control
over Heterogeneous Network Models and Protocols. In International Conference on
Active Media Technology, pages 433–444, Macau, China, December 2012. Springer. (Cited
on pages 36 and 38.)

[116] D. Le-Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, and M. Hauswirth. A middleware
framework for scalable management of linked streams. Web Semantics: Science, Services
and Agents on the World Wide Web, 16:42–51, 2012. (Cited on pages 36 and 38.)

[117] K. Da, P. Roose, M. Dalmau, J. Nevado, and R. Karchoud. Kali2Much: a context middle-
ware for autonomic adaptation-driven platform. In Proceedings of the 1st ACM Workshop
on Middleware for Context-Aware Applications in the IoT, pages 25–30, Bordeaux, France,
December 2014. ACM. (Cited on pages 36 and 38.)

[118] S. Hachem, A. Pathak, and V. Issarny. Service-Oriented Middleware for the Mobile
Internet of Things: A Scalable Solution. In IEEE GLOBECOM: Global Communications
Conference, Austin, TX, USA, December 2014. (Cited on pages 36 and 38.)

[119] A. Kothari, V. Boddula, L. Ramaswamy, and N. Abolhassani. DQS-Cloud: A Data Quality-
Aware autonomic cloud for sensor services. In Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), 2014 International Conference on,
pages 295–303. IEEE, October 2014. (Cited on pages 37 and 38.)

[120] C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Georgakopoulos.
Sensor Search Techniques for Sensing as a Service Architecture for the Internet of Things.
IEEE Sensors Journal, 14(2):406–420, 2014. (Cited on pages 37 and 38.)

[121] J. Soldatos, N. Kefalakis, M. Hauswirth, and others. OpenIoT: Open Source Internet-
of-Things in the Cloud. In Interoperability and Open-Source Solutions for the Internet
of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with
SoftCOM 2014, Invited Papers, volume 9001, pages 13–25, Split, Croatia, September 2015.
Springer. (Cited on pages 37, 38, 39, 41, 83, and 91.)

[122] M. G. Kibria, S. M. M. Fattah, K. Jeong, I. Chong, and Y.-K. Jeong. A User-Centric
Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment.
Sensors, 15(9):24054–24086, 2015. (Cited on pages 37 and 38.)

[123] V. Gutiérrez, D. Amaxilatis, G. Mylonas, and L. Muñoz. Empowering citizens towards
the co-creation of sustainable cities. IEEE Internet of Things Journal, PP(99):1–1, 2017.
(Cited on pages 38 and 39.)

179

[124] ISO/IEC/IEEE. ISO/IEC/IEEE Systems and software engineering – Architecture de-
scription. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000), pages 1–46, December 2011. (Cited on page 44.)

[125] ISO/IEC/IEEE. ISO/IEC/IEEE 42010 Homepage, 2011. URL http://www.
iso-architecture.org/ieee-1471/index.html. Retrieved: 14/12/2017. (Cited on
page 44.)

[126] ISO/IEC/IEEE. ISO/IEC/IEEE 42010: Conceptual Model, 2011. URL http://www.
iso-architecture.org/ieee-1471/cm/. Retrieved: 14/12/2017. (Cited on pages
45 and 165.)

[127] ITU-T. Y.2066: Common requirements of the Internet of things. International
Telecommunication Union-Telecommunication Standardisation Sector (ITU-T), June
2014. (Cited on page 46.)

[128] S. H. Javadi and A. Peiravi. Fusion of weighted decisions in wireless sensor networks.
IET Wireless Sensor Systems, 5(2):97–105, 2015. (Cited on page 53.)

[129] M. Fowler. What Is the Point of the UML? In «UML» 2003 - The Unified Modeling
Language. Modeling Languages and Applications, Lecture Notes in Computer Science,
pages 325–325. Springer, October 2003. (Cited on page 55.)

[130] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J. Sherbondy, and R. Singh.
Cognitive computing. Communications of the ACM, 54(8):62–71, 2011. (Cited on page
57.)

[131] J. Kelly III and S. Hamm. Smart Machines: IBMÕs Watson and the Era of Cognitive
Computing. Columbia University Press, 2013. (Cited on page 57.)

[132] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor. IoT-Lite Ontology, 2015. URL
https://www.w3.org/Submission/iot-lite/. Retrieved: 14/12/2017. (Cited on
page 60.)

[133] T. Berners-Lee. Linked Data - Design Issues, June 2009. URL https://www.w3.org/
DesignIssues/LinkedData.html. Retrieved: 14/12/2017. (Cited on page 72.)

[134] Linked Data | Linked Data - Connect Distributed Data across the Web. URL http:
//linkeddata.org/. Retrieved: 14/12/2017. (Cited on page 72.)

[135] A. Gyrard, M. Serrano, and G. A. Atemezing. Semantic Web methodologies, best practices
and ontology engineering applied to Internet of Things. In 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT), pages 412–417, December 2015. (Cited on page 72.)

[136] A. Mileo, F. Gao, A. Muhammad Intizar, A. T. P. Le Thi, M. Bermudez, and D. Puschmann.
Real-time Adaptive Urban Reasoning. Public dissemination report D5.1, FP7 CityPulse
project, July 2014. URL http://www.ict-citypulse.eu/page/sites/default/
files/d5.1-citypulse_v1.8-final.pdf. Retrieved: 14/12/2017. (Cited on page
83.)

180

http://www.iso-architecture.org/ieee-1471/index.html
http://www.iso-architecture.org/ieee-1471/index.html
http://www.iso-architecture.org/ieee-1471/cm/
http://www.iso-architecture.org/ieee-1471/cm/
https://www.w3.org/Submission/iot-lite/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://linkeddata.org/
http://linkeddata.org/
http://www.ict-citypulse.eu/page/sites/default/files/d5.1-citypulse_v1.8-final.pdf
http://www.ict-citypulse.eu/page/sites/default/files/d5.1-citypulse_v1.8-final.pdf

[137] G. A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. Techni-
cal report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1985. (Cited on page 90.)

[138] D. Kramer. The Java Platform. White Paper, Sun Microsystems, Mountain View, CA, 1996.
(Cited on page 91.)

[139] M. Nash and W. Waldron. Applied Akka Patterns: A Hands-on Guide to Designing
Distributed Applications. O’Reilly Media, Inc., 2016. (Cited on page 91.)

[140] N. Garg. Apache Kafka. Packt Publishing Ltd, 2013. (Cited on page 92.)

[141] J. Kreps, N. Narkhede, J. Rao, and others. Kafka: A distributed messaging system for log
processing. In Proceedings of the NetDB, pages 1–7, 2011. (Cited on pages 92 and 130.)

[142] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park, J. Rao, and V. Y. Ye. Building
LinkedIn’s Real-time Activity Data Pipeline. IEEE Data Eng. Bull., 35(2):33–45, 2012.
(Cited on pages 93 and 130.)

[143] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices Architecture Enables DevOps:
Migration to a Cloud-Native Architecture. IEEE Software, 33(3):42–52, May 2016. (Cited
on page 117.)

[144] K. L. Lueth. IoT Analytics Why it is called Internet of Things: Defi-
nition, history, disambiguation, 2014. URL https://iot-analytics.com/
internet-of-things-definition/. Retrieved: 14/12/2017. (Cited on pages 123
and 124.)

[145] D. Patterson. Why Latency Lags Bandwidth, and What it Means to Comput-
ing, 2004. URL https://ll.mit.edu/HPEC/agendas/proc04/invited/patterson_
keynote.pdf. Retrieved: 14/12/2017. (Cited on page 124.)

[146] J. Kreps. Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three
Cheap Machines), April 2014. URL https://engineering.linkedin.com/kafka/
benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines.
Retrieved: 14/12/2017. (Cited on pages 124, 126, 130, and 131.)

[147] T. Nam and T. A. Pardo. Conceptualizing Smart City with Dimensions of Technology,
People, and Institutions. In Proceedings of the 12th Annual International Digital Govern-
ment Research Conference: Digital Government Innovation in Challenging Times, pages
282–291, New York, NY, USA, 2011. ACM. (Cited on page 134.)

[148] R. E. Hall, B. Bowerman, J. Braverman, J. Taylor, H. Todosow, and U. Von Wimmersperg.
The Vision of A Smart City. Technical report, Brookhaven National Lab., Upton, NY (US),
2000. (Cited on page 134.)

[149] G. P. Hancke, G. P. Hancke Jr, and others. The Role of Advanced Sensing in Smart Cities.
Sensors, 13(1):393–425, 2012. (Cited on page 134.)

181

https://iot-analytics.com/internet-of-things-definition/
https://iot-analytics.com/internet-of-things-definition/
https://ll.mit.edu/HPEC/agendas/proc04/invited/patterson_keynote.pdf
https://ll.mit.edu/HPEC/agendas/proc04/invited/patterson_keynote.pdf
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

[150] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon, T. A. Pardo, and
H. J. Scholl. Understanding Smart Cities: An Integrative Framework. In 2012 45th Hawaii
International Conference on System Sciences, pages 2289–2297, January 2012. (Cited on
page 134.)

[151] J. R. Taylor and E. R. Cohen. An Introduction to Error Analysis: The Study of Uncertainties
in Physical Measurements. Measurement Science and Technology, 9(6):1015, 1998. (Cited
on page 134.)

[152] D. Guinard and V. Trifa. Towards the Web of Things: Web Mashups for Embedded De-
vices. In Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the
Web (MEM 2009), in proceedings of WWW (International World Wide Web Conferences),
Madrid, Spain, April 2009. (Cited on page 137.)

[153] P. Barnaghi, A. Sheth, and C. Henson. From Data to Actionable Knowledge: Big Data
Challenges in the Web of Things [Guest Editors’ Introduction]. IEEE Intelligent Systems,
28(6):6–11, November 2013. (Cited on page 137.)

[154] K. Fall and S. Farrell. DTN: An Architectural Retrospective. IEEE Journal on Selected
areas in communications, 26(5), 2008. (Cited on page 140.)

[155] K. Fall. A Delay-tolerant Network Architecture for Challenged Internets. In Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’03, pages 27–34, New York, NY, USA, 2003.
ACM. (Cited on page 141.)

[156] G. Baudic. HINT - from opportunistic network characterization to application develop-
ment. PhD thesis, 2016. (Cited on page 142.)

[157] V. Ramiro, J. Piquer, T. Barros, and P. Sepúlveda. The Chilean Internet: Did it survive the
earthquake? WIT Transactions on State-of-the-art in Science and Engineering, 58, 2012.
(Cited on page 144.)

[158] M. Kassab. Non-functional requirements: modeling and assessment. VDM Verlag, 2009.
(Cited on page 146.)

[159] S. Schaffert, D. Bischof, T. Bürger, A. Gruber, W. Hilzensauer, and S. Schaffert. Learning
with Semantic Wikis. In 1st Workshop SemWiki2006: From Wiki to Semantics, Budva,
Montenegro, 2006. (Cited on page 157.)

[160] K. Christidis and M. Devetsikiotis. Blockchains and Smart Contracts for the Internet of
Things. IEEE Access, 4:2292–2303, 2016. (Cited on page 160.)

[161] A. Ahmed and E. Ahmed. A survey on Mobile Edge Computing. In 2016 10th Interna-
tional Conference on Intelligent Systems and Control (ISCO), pages 1–8, January 2016.
(Cited on page 160.)

182

RÉSUMÉ DE THÈSE DE DOCTORAT EN FRANÇAIS

Qualité des Observations pour les systèmes
Sensor Webs : de la théorie à la pratique

Quality of Observation within Sensor Web systems: from theory to practice

Antoine Auger
ISAE-SUPAERO, Université de Toulouse, France

Sous la supervision de :
Pr. Emmanuel LOCHIN, ISAE-SUPAERO, Directeur de thèse

Pr. Ernesto EXPOSITO, Université de Pau et des Pays de l’Adour, Co-directeur de thèse

Cette page a été laissée intentionnellement blanche.

ii

Résumé

Définie pour la première fois par la NASA en 2000, la notion de Sensor Web correspond
à l’ajout d’une couche middleware entre les capteurs et les applications. Plus récemment,
de nouveaux paradigmes tels que l’Internet des Objets (IoT) ont révolutionné le domaine
des capteurs et introduit de nouvelles problématiques de recherche. Envisagée pendant un
temps, la traditionnelle Qualité de Service (QoS) réseau a depuis montré ses limites lorsqu’il
s’agissait de caractériser précisément les besoins utilisateurs dans les systèmes basés sur des
capteurs. Cette tendance se confirme alors même que de plus en plus de systèmes traitent
les observations reçues des capteurs afin de fournir des services à forte valeur ajoutée à
leurs utilisateurs. Par conséquent, de nouveaux enjeux en termes d’intégration, de Qualité
des Observations (QoO) ou d’adaptation système doivent être relevés afin de permettre le
développement de nouveaux Sensor Webs capables de fonctionner dans des environnements
complexes et hétérogènes tels que l’IoT.

Le but de cette thèse est de promouvoir la notion de QoO dans les Sensor Webs adapta-
tifs (QASWS) et de développer une nouvelle génération de middleware pour capteurs capables
de surmonter les trois défis précédemment identifiés. En ce qui concerne l’intégration, nous
avons étendu le paradigme initial des Sensor Webs afin de pouvoir prendre en compte plu-
sieurs types de capteurs ainsi que plusieurs niveaux d’observations. En ce qui concerne la
QoO, nous avons proposé de l’exprimer grâce à la définition de métriques. Afin d’avoir des
attributs plus interopérables, nous avons proposé notre propre ontologie QoOnto basée sur
le standard SSN du W3C. Par conséquent, chaque requête relative à des observations peut
être vue comme un contrat pouvant contenir ou non des contraintes additionnelles en termes
de QoO. Afin de satisfaire ces différents contrats, nous avons imaginé le passage des observa-
tions au travers d’une succession d’étapes de transformation (pipeline) où des mécanismes
supplémentaires pourraient être développés par des spécialistes du domaine de manière
incrémentale. Finalement, afin d’assurer une continuité de service, nous avons utilisé une
boucle d’adaptation MAPE-K issue de l’Autonomic Computing pour fournir une adaptation
basée sur les ressources et la QoO tout en renvoyant des informations de rétrocontrôle aux
utilisateurs.

Cette thèse propose principalement deux contributions originales. La première contribu-
tion est un framework générique pour le développement de solutions dîtes QASWS. Composé
de plusieurs ressources, ce framework couvre les principales étapes du cycle de développe-
ment et est destiné à tout chercheur désireux de concevoir sa propre solution Sensor Web.

iii

Résumé

La deuxième contribution est une plateforme d’intégration pour l’évaluation de la QoO à
la demande (iQAS). Complémentaire de notre framework générique, iQAS est un prototype
fonctionnel qui nous permet de justifier certains choix techniques lors de l’implémentation
de solutions QASWS.

Nous avons évalué chacune de nos contributions de plusieurs manières. En dépit de cer-
tains compromis entre la latence, le débit et la taille des observations pouvant être expliqués
par certains de nos choix d’implémentation, les performances de iQAS sont plus que satisfai-
santes pour un premier prototype déployé en local. Concernant les cas d’utilisation de iQAS,
nous avons introduit trois scénarios de déploiement qui montrent comment la notion de
QoO peut aider à améliorer le service global fourni aux utilisateurs finaux. À cette occasion,
nous nous sommes concentrés sur des métriques de QoO adaptées et spécifiquement définies
pour chacun de nos cas d’étude : la précision des observations dans les villes intelligentes,
la fréquence des observations reçues pour le Web of Things et l’âge des observations lorsque
ces dernières sont collectées pair à pair de manière décentralisée dans des environnements
sinistrés.

Mots-clefs : Sensor Webs, Internet des Objets, capteurs, Qualité des Observations, frame-
work générique, plateforme d’intégration.

iv

Table des matières

Résumé iii

Table des matières v

1 Introduction Générale 1
1.1 Introduction . 1
1.2 Contexte . 2
1.3 Problématiques de Recherche . 3

1.3.1 Problématiques liées à l’Intégration . 4
1.3.2 Problématiques liées à la Qualité des Observations 5
1.3.3 Problématiques liées à l’Adaptation Système 6

1.4 Approches Existantes . 7
1.5 Contributions Scientifiques . 10

2 Framework Générique pour Sensor Webs Adaptatifs basés sur la QoO 12
2.1 Introduction . 12
2.2 Modèle de Référence pour les QASWS . 12

2.2.1 Modèle Fonctionnel . 12
2.2.2 Modèle d’Adaptation . 13
2.2.3 Modèle de Domaine . 14
2.2.4 Modèle pour les Observations . 15

2.3 Architecture de Référence pour les QASWS . 16
2.3.1 Vue Fonctionnelle . 17
2.3.2 Autres Vues Architecturales . 18

2.4 Bonnes Pratiques de Référence pour les QASWS 18

3 iQAS : une Plateforme d’Intégration pour l’Évaluation de la Qualité des Observations
à la Demande 20
3.1 Introduction . 20
3.2 Instanciation de notre Framework Générique pour QASWS 20
3.3 Conception . 21

v

Table des matières

3.4 Implémentation . 22
3.4.1 Caractérisation de la QoO . 22
3.4.2 Adaptation Système . 23

3.5 Utilisation et Déploiement . 24
3.5.1 Configuration . 24
3.5.2 Interaction avec iQAS . 25
3.5.3 Déploiements Possibles pour la Plateforme iQAS 27

4 Conclusions et Perspectives 28
4.1 Contributions : Systèmes Sensor Webs Adaptatifs basés sur la QoO 28

4.1.1 Framework Générique pour les QASWS . 28
4.1.2 La Plateforme iQAS . 29

4.2 Perspectives . 30
4.2.1 Améliorations concernant le Framework Générique pour les QASWS . . 30
4.2.2 Améliorations concernant la Plateforme iQAS 31
4.2.3 Paradigmes Transverses d’Intérêt pour la QoO 32

Bibliographie 34

vi

Chapitre 1
Introduction Générale

1.1 Introduction

Le fait de mesurer et de caractériser notre environnement a toujours représenté un certain
intérêt pour les humains. L’un des premiers capteurs apparu sur le marché semble être un
thermostat conçu en 1883 par Warren S. Johnson, un professeur d’université Américain.
L’histoire raconte qu’il développa ce premier thermostat afin de mieux réguler la température
à l’intérieur de ses salles de cours 1. Depuis lors, en tant qu’êtres subjectifs, nous avons conçu
et fabriqué de très nombreux capteurs dans le but de conserver une certaine objectivité vis-à-
vis de certains phénomènes ou évènements pouvant survenir dans nos vies de tous les jours.
De façon générale, ces capteurs ont grandement contribué à améliorer notre compréhension
des phénomènes naturels et du monde dans lequel nous vivons.

Dans les années 2000, les premiers middlewares pour capteurs furent développés et dé-
ployés afin de faciliter la collecte des observations de manière ponctuelle. Ces middlewares
étaient des logiciels informatiques permettant de faire abstraction des technologies sous-
jacentes utilisées par les capteurs, aidant les applications à exprimer plus facilement leurs
besoins en termes de requêtes. Aujourd’hui encore, de nombreux middlewares pour capteurs
jouent le rôle d’intermédiaires uniques entre les applications et les capteurs, participant à
la mise en œuvre du paradigme Sensor Web [1]. L’émergence puis le rapide développement
du paradigme de l’Internet des Objets (Internet of Things ou IoT en anglais) a cependant en-
traîné l’apparition de nouveaux types de capteurs (capteurs virtuels et capteurs logiques) ainsi
qu’une évolution des besoins utilisateurs. À titre d’exemple, les traditionnelles requêtes sujet/-
date/lieu (quoi ?, quand ?, où ?) sont désormais révolues au profit de requêtes plus complexes
nécessitant d’être résolues en temps réel selon le contexte. Plus important, les utilisateurs
ont désormais des besoins différents qui requièrent de la part des middlewares d’adapter la
distribution des observations de manière spécifique aux cas d’utilisation. À titre d’exemple,
on peut supposer qu’une application touristique fournissant des suggestions d’itinéraires en
fonction du niveau de pollution de l’air ambiant aura des exigences moindres en termes de

1. Source : https://fr.wikipedia.org/wiki/Warren_S._Johnson

1

https://fr.wikipedia.org/wiki/Warren_S._Johnson

Chapitre 1. Introduction Générale

qualité des observations qu’une application de santé pour personnes asthmatiques.

Pour répondre à ces changements, la principale approche a consisté à rajouter de l’intelli-
gence au niveau middleware afin de fournir de nouvelles garanties (par exemple en termes
de Qualité de Service – Quality of Service ou QoS en anglais) ou afin de rendre possible de
nouvelles fonctionnalités telles que l’annotation (sémantique ou non) d’observations avec des
informations de contexte. Cette approche, désormais connue comme le paradigme Sensor
Web, a grandement participé à la simplification du développement des applications. En effet,
en utilisant des Sensor Webs comme fournisseurs d’observations, les développeurs ont pu
se concentrer davantage sur la création de services à forte valeur ajoutée plutôt que sur le
traitement et la vérification de ces observations à proprement parler. Cependant, les Sensor
Web existants ne prennent pas suffisamment en compte les enjeux posés par les nouveaux
producteurs et consommateurs d’observations comme ceux pouvant être rencontrés dans
le cadre de l’IoT. Notre travail de recherche s’attache à répondre à certains de ces enjeux qui
concernent plus particulièrement les problématiques d’intégration, de qualité des observa-
tions et d’adaptation système.

1.2 Contexte

À la fin des années 1990, les premiers Sensor Webs furent proposés et développés par la
NASA 2 pour la surveillance environnementale grâce à des capteurs physiques déployés sur le
terrain. Ces systèmes se caractérisaient déjà par une coopération entre capteurs pour la réali-
sation de tâches spécifiques. Plus tard, en 2003 et 2011, l’Open Geospatial Consortium (OGC)
formalise le paradigme Sensor Web et publie des standards pour son implémentation, notam-
ment grâce à la création de l’initiative Sensor Web Enablement (SWE). Cette initiative envisage
le paradigme Sensor Web [1] via l’utilisation d’un middleware entre les couches Capteur et
Application, jouant le rôle d’un médiateur entre les fonctionnalités des capteurs et les besoins
applicatifs. Par ailleurs, tels que définis par l’OGC, les solutions Sensor Webs doivent four-
nir certaines fonctionnalités permettant de masquer la complexité de certaines opérations
comme l’accès aux capteurs, leur découverte, la planification de tâches, la remontée d’alertes
ainsi que la gestion d’évènements (voir Figure 1.1).

L’Internet des Objets (IoT) [2, 3] est un paradigme récent qui repose sur une multitude
d’objets (aussi appelés Things en anglais) interconnectés pouvant être adressés de manière
individuelle, le plus souvent en utilisant Internet. De multiples façons, l’IoT a révolutionné le
domaine des capteurs en introduisant de nouveaux types de capteurs (plus seulement phy-
siques mais aussi virtuels), de nouvelles méthodes de traitement des données, de nouveaux
services à valeur ajoutée ainsi que de nouveaux usages. À la lumière de ces profonds change-
ments, nous avons assisté au développement d’innombrables plateformes centrées autour des
données, généralement appelées “plateformes IoT”. Comparées aux premiers middlewares
pour capteurs, ces plateformes sont plus intelligentes et fournissent davantage de services
à leurs consommateurs, les soulageant d’effectuer des opérations qui pourraient s’avérer
coûteuses en termes de temps ou de ressources. En conséquence, ces plateformes IoT sont

2. National Aeronautics and Space Administration

2

1.3. Problématiques de Recherche

Couche Sensor Web

Couche Capteur

Couche Application

découverte

tâches évènements

alerte

accès

physique virtuel logique

FIGURE 1.1 – Sensor Web : une couche middleware entre les capteurs et les applications

généralement capables d’effectuer des traitements sophistiquées (comme par exemple des
raisonnements ou de l’inférence sémantique) sur les observations reçues des capteurs de ma-
nière individualisée à chaque consommateur. Enfin, certaines de ces plateformes réutilisent le
paradigme du Cloud Computing [4, 5], pour fournir un service à la demande, plus générique et
supportant le passage à l’échelle : on parle alors de Sensing as a Service (S2aaS) [6]. De manière
logique, les consommateurs d’observations sont devenus de plus en plus exigeants alors que
les plateformes évoluaient. Par exemple, la détection d’évènements en continu et la remontée
d’observations en temps réel sont deux exigences qui sont aujourd’hui la norme dans nombre
de systèmes basés sur des capteurs [7].

Plus que jamais, il existe une réelle nécessité de combler le fossé existant entre les fonc-
tionnalités offertes par les capteurs et les besoins des consommateurs finaux tout en réduisant
la complexité des applications utilisées. En ce sens, nous pensons qu’une couche middleware
est requise afin de mieux gérer les différentes fonctionnalités des capteurs, d’uniformiser les
différentes observations ou de traduire les besoins applicatifs. En cela, les Sensor Webs ont
déjà prouvé être d’excellents médiateurs fournissant des fonctionnalités additionnelles telles
que le passage à l’échelle ou la continuité de service par exemple. Cependant, en introduisant
de profonds changements, l’IoT soulève aussi de nouveaux défis vis-à-vis de la qualité des
observations et de l’adaptation système qui requièrent d’être pleinement considérés par les
Sensor Webs. Nous détaillons certains de ces enjeux dans la section suivante.

1.3 Problématiques de Recherche

La prolifération des capteurs et les exigences grandissantes des applications pour des
services à forte valeur ajoutée répondant à leurs besoins hétérogènes rendent plus difficile
la réalisation de la vision Sensor Web pour l’IoT. En particulier, la conception de plateformes
organisées autour des données et capables de fournir des services à forte valeur ajoutée à
partir d’observations reçues soulève de nouvelles problématiques de recherche.

3

Chapitre 1. Introduction Générale

1.3.1 Problématiques liées à l’Intégration

En ingénierie logicielle, l’intégration système est définie comme le processus de connecter
ensemble plusieurs systèmes informatiques et applications logicielles différents entre eux de
manière physique ou fonctionnelle afin qu’ils agissent comme un seul et même ensemble
coordonné. 3. Trois principaux enjeux liés à l’intégration doivent être considérés lors de la
conception d’un système Sensor Web :

Producteurs d’observations De nombreux capteurs ont été conçus par différents fabricants
au cours de ces dernières années. Ceci a conduit à une grande hétérogénéité puisque
les capteurs peuvent se distinguer de par leurs fonctionnalités (fréquence de mesure,
niveau de batterie, etc.), leur localisation (par exemple mobile ou statique), etc. Ces
fonctionnalités disparates et potentiellement dynamiques doivent être correctement
prises en compte par les Sensor Webs pour répondre au mieux aux différentes requêtes
des consommateurs. Avec le développement rapide de l’IoT, les capteurs virtuels et
logiques sont désormais de nouveaux producteurs d’observations pouvant être utilisés
par les Sensor Webs. En général, ces capteurs virtuels sont des services Web pouvant
être interrogés via des interfaces de programmation (APIs). À la différence des capteurs
physiques, les capteurs virtuels n’ont généralement pas une présence matérielle. Par
exemple, Twitter ou Google Maps peuvent être considérés comme des capteurs virtuels.
Les capteurs logiques sont, quant à eux, des capteurs qui combinent des données
reçues à la fois de capteurs physiques et virtuels afin de produire des observations plus
complètes (par exemple un service Web qui collecte des données d’une station météo
physique et les affiche sur une carte récupérée d’un capteur virtuel).

Consommateurs d’observations Du point de vue d’un Sensor Web, les applications tierces
représentent les principaux consommateurs d’observations à satisfaire. De la même ma-
nière que pour les capteurs, l’hétérogénéité est aussi présente au niveau applicatif : selon
leur conception, leur développement et leur domaine d’application, ces applications
peuvent exprimer des besoins différents en termes d’observations. En particulier, les
consommateurs peuvent vouloir exprimer des contraintes supplémentaires en termes
de granularité et de qualité d’observations.

Passage à l’échelle Pour un système donné, le fait de pouvoir “passer à l’échelle” peut être
défini comme “la capacité à pouvoir supporter une charge grandissante de travail ou
comme son potentiel à s’élargir afin d’accepter une telle charge” [8]. En ce qui concerne
les Sensor Webs, la charge de travail à réaliser peut être estimée basée sur le nombre
d’observations à traiter par unité de temps. Plusieurs facteurs peuvent contribuer à
l’augmentation de cette charge de travail, comme par exemple le nombre de capteurs
connectés (ainsi que leur fréquence de mesure), le nombre de consommateurs distincts
à satisfaire, les différentes opérations de transformation à appliquer sur les observations,
etc. Gartner prédit que 20.4 milliards d’objets connectés seront utilisés dans le monde
en 2020. Ceci représente une augmentation de 142% par rapport à l’année 2017 (8.4
milliards d’objets connectés) 4. Entre temps, les dernières avancées dans les réseaux

3. Source : http://www2.cis.gsu.edu/cis/program/syllabus/graduate/cis8020.asp
4. Source : http://www.gartner.com/newsroom/id/3598917

4

http://www2.cis.gsu.edu/cis/program/syllabus/graduate/cis8020.asp
http://www.gartner.com/newsroom/id/3598917

1.3. Problématiques de Recherche

mobiles cellulaires (avec la cinquième génération de standards pour la téléphonie
mobile) laisse présager d’une réduction du coût énergétique nécessaire aux capteurs
pour la remontée de leurs mesures. Ceci peut mener à une augmentation du volume
d’observations à traiter par les Sensor Webs. À la lumière de telles prédictions, le passage
à l’échelle est un défi qui doit nécessairement être pris en compte afin de permettre
l’intégration de nouveaux objets connectés tout en assurant une qualité de service
adéquate pour les requêtes déjà déployées.

1.3.2 Problématiques liées à la Qualité des Observations

En tant que systèmes centrés autour des données, les Sensor Webs peuvent aussi bien
fournir des observations ou des services à plus forte valeur ajoutée (planification d’itinéraires
en temps réel, recherche de places de parking publiques, gestion intelligente d’un bâtiment,
etc.) à leurs consommateurs. En retour, ces consommateurs peuvent attendre de ces midd-
lewares qu’ils respectent leurs besoins, afin d’utiliser tel quel les observations reçues. Sur ce
point, la Qualité de Service (QoS) offerte par un Sensor Web peut avoir un impact direct sur les
décisions prises par les utilisateurs d’une application donnée. Plus spécifiquement, la QoS
réseau peut impacter la Qualité des Données (DQ) reçues des producteurs d’observations et,
par conséquent, impacter la Qualité des Observations (QoO) perçue par les consommateurs
finaux [9]. Avant de contracter des accords de service (Service Level Agreements ou SLAs), un
Sensor Web doit d’abord définir les attributs QoO ou métriques qu’il prévoit de supporter. Par
la suite, cette terminologie commune sera essentielle pour exprimer les besoins en termes de
QoO et pour la formalisation des garanties en termes de QoO.

Expression des besoins en termes de QoO La plupart des requêtes d’observations peuvent
être décomposées selon le schéma de la Triad [10] et être décomposées selon les primi-
tives quoi?, où? et quand?. Tandis que les primitives où? et quand? font référence au
contexte spatiotemporel de la mesure, la primitive quoi ? fait généralement référence à la
propriété d’intérêt (température, humidité, etc.) pour le consommateur qui a soumis la
requête. Les besoins en QoO correspondent à l’expression de contraintes additionnelles
vis à vis d’une ou de plusieurs de ces primitives. En effet, appliqué à des systèmes mo-
dernes centrés autour des données, les attributs classiques de QoS réseau (délai, bande
passante, gigue, etc.) se sont révélés être inadaptés pour exprimer les caractéristiques
intrinsèques des observations qu’un consommateur désirait recevoir. Lorsqu’ils sont
présents, les besoins QoO représentent la qualité minimum acceptable pour un consom-
mateur donné. Par exemple, un consommateur A peut seulement être intéressé par des
observations récentes mesurées il y a moins de 1 heure tandis qu’un consommateur B
peut être intéressé par toutes les observations disponibles à condition qu’elles aient été
évaluées comme étant suffisamment précises. En exprimant des besoins QoO différents,
ces deux consommateurs n’ont pas la même définition de ce qu’est une observation de
“bonne qualité”. Cependant, l’expression de besoins QoO est conditionnée par l’usage
d’une terminologie commune. En conséquence, les Sensor Webs doivent fournir un
ensemble de métriques/d’attributs à leurs consommateurs de telle façon qu’ils puissent
précisément exprimer leurs besoins QoO. Par ailleurs, puisque tous les consommateurs

5

Chapitre 1. Introduction Générale

n’expriment pas forcément de besoins spécifiques en termes de QoO, celle-ci doit rester
optionnelle lors de la création d’un nouveau SLA.

Garanties en termes de QoO Pour un Sensor Web, offrir des garanties en termes de QoO
est un processus complexe impliquant de relever de nombreux défis. Certains d’entre
eux concernent la découverte de mécanismes disponibles pouvant être utilisés afin
d’ajuster le niveau de QoO alors que d’autres concernent la caractérisation de ces méca-
nismes, leur sélection, leur déploiement, leur composition, leur initialisation voire leur
(re)configuration. À titre d’exemple, la composition a montré être un problème difficile
pour les Architectures Orientées Services (SOA) [11] comme pour les Services Web Sé-
mantiques [12]. Les flux d’observations continus (observation streams) soulèvent aussi
de nouveaux problèmes et exigent de considérer des garanties de QoO parfois implicites.
Ainsi, de tels flux requièrent de préserver l’ordre des observations afin de permettre la
mise en place de traitements complexes comme l’Event Stream Processing (ESP) [7], qui
permet de reconstruire la chronologie d’événements ayant eu lieu. Finalement, comme
la QoO et les besoins utilisateurs sont des notions dynamiques, les Sensor Webs peuvent
aussi envisager des processus d’adaptation plus dynamiques, en s’appuyant sur des
boucles de rétrocontrôle pour satisfaire en temps réel différents SLAs.

1.3.3 Problématiques liées à l’Adaptation Système

En tant que programme logiciel, les Sensor Webs sont généralement l’aboutissement d’un
long processus de développement informatique. Conçus pour répondre à certains besoins
fonctionnels et non-fonctionnels, il est néanmoins impossible pour les développeurs d’ima-
giner tous leurs futurs usages ainsi que tous les futurs besoins utilisateurs. Par conséquent,
une adaptation de ces logiciels est requise afin de supporter davantage de cas d’utilisation
sans pour autant nécessiter le développement de nouvelles fonctionnalités ou composants.
Comme nous le verrons par la suite, l’adaptation système est ainsi une fonctionnalité de choix
pour faciliter l’intégration des capteurs et fournir des garanties en termes de QoO.

Auto-(re)configuration Dans cette thèse, nous appelons “auto-configuration” le processus
de découverte et de configuration automatique des ressources qu’un Sensor Web peut
utiliser ou accéder. Généralement, un tel processus n’est réalisé qu’une seule fois à
son lancement. Cependant, il peut aussi être déclenché chaque fois qu’une ressource
critique (comme un capteur, un mécanisme défini par un utilisateur, un changement de
configuration, etc.) est ajoutée, mise à jour ou supprimée. Dans le cas où certains chan-
gements doivent être appliqués, il est plus judicieux de parler d’“auto-reconfiguration”.
La découverte des capteurs est normalement une fonctionnalité offerte par les systèmes
Sensor Webs (voir Figure 1.1). Afin de prendre connaissance des différentes fonctionnali-
tés de leurs capteurs, les Sensor Webs peuvent implémenter les différents protocoles de
communication utilisés par leurs capteurs (comme le protocole TEDS 5 IEEE 1451 [13]
par exemple), ce qui permet l’ajout et la suppression de capteurs de manière plug-
and-play. Lorsque cette fonctionnalité ne peut être implémentée, les différents acteurs

5. Transducer Electronic Data Sheet

6

1.4. Approches Existantes

peuvent avoir recours à des ontologies afin de décrire les capacités de leurs capteurs et
ainsi abstraire leur hétérogénéité (fabricant, protocole de communication utilisé, etc.).

Adaptation basée sur la QoO Dans cette thèse, lorsque nous parlons d’adaptation basée sur
la QoO, nous faisons référence à la capacité d’un Sensor Web à ajuster dynamiquement
la qualité des observations délivrées selon les différents besoins des consommateurs.
Dans ce cadre, nous distinguons deux processus différents de reconfiguration pouvant
être mis en place afin de réaliser une adaptation basée sur la QoO. Ces processus sont
des processus de reconfiguration dans le sens où ils requièrent obligatoirement de modi-
fier une partie du comportement interne d’un Sensor Web afin de satisfaire les besoins
d’un consommateur. Une reconfiguration structurelle est opérée lorsqu’il s’agît de créer
une nouvelle “chaîne de transformation d’observations” avec plusieurs composants/-
mécanismes mis bout-à-bout qui traitent les observations de manière séquentielle pour,
à la fin, tendre vers le niveau de QoO spécifié dans le SLA soumis par le consommateur.
Toute modification de cette chaîne de transformation d’observations (principalement
l’insertion ou la suppression d’un composant) peut aussi être considérée comme une
reconfiguration structurelle. Une reconfiguration comportementale, quant à elle, fait
référence à une opération (activation, désactivation, réinitialisation, changement de
valeur pour un paramètre donné, etc.) réalisée sur un composant spécifique faisant sou-
vent partie d’une chaîne de transformation d’observations déjà déployée. Bien qu’une
reconfiguration comportementale est généralement moins couteuse à réaliser qu’une
reconfiguration structurelle, elle requiert néanmoins des composants modulaires et
(re)configurables afin d’être réalisée. Dans les deux cas de figure, l’adaptation basée
sur la QoO fait appel à la connaissance de certains experts du domaine (par exemple
des météorologistes) devant formaliser leurs connaissances d’une manière compréhen-
sible par un Sensor Web. Ce paramétrage permet ensuite au système de correctement
sélectionner, chaîner, configurer et déployer différents composants pour former de
nouvelles chaines d’observations. Suivant les implémentations, cette adaptation peut
être supervisée ou être réalisée automatiquement sans aucune intervention humaine.

1.4 Approches Existantes

Publiée en 2011, la spécification OGC SWE 2.0 [1] représente l’effort de standardisation
le plus récent pour les systèmes dits Sensor Webs. Elle est composée de plusieurs standards
détaillant l’encodage des observations ainsi que les interfaces des Services Web. Malgré le
manque d’une définition de la QoO ou d’attributs permettant de la caractériser, l’OGC a
reconnu les enjeux posés par la Qualité des Données (Data Quality abrégée DQ en anglais),
leur provenance ainsi que l’évaluation de leur incertitude, mentionnant que “la connaissance
de la qualité, de la provenance et de l’incertitude des mesures des capteurs est essentielle afin de
prendre de bonnes décisions basées sur ces observations” [1]. Cependant, dans le même article,
l’OGC souligne qu’il n’existe pas de manière unique pour incorporer ces attributs de qualité
aux observations et que de telles informations sont généralement manquantes.

Au final, peu de prototypes ont concrètement implémenté les standards de l’OGC. Parmi
les rares Sensor Webs les ayant utilisés, nous pouvons citer la solution SWAP [14] ou la solution

7

Chapitre 1. Introduction Générale

FAPFEA [15]. Cependant, même si ces solutions utilisent la spécification OGC SWE 2.0, elles se
focalisent davantage sur la gestion et le déploiement des différents Services Web que sur les
problématiques liées à la QoO. D’expérience, cette tendance peut s’expliquer par le fait qu’en
dépit des implémentations disponibles comme celle fournie par la communauté 52°North
Sensor Web 6, les standards de l’OGC SWE demeurent complexes à déployer, à configurer et
à utiliser. Entre-temps, avec l’émergence de l’IoT [3], nous avons assisté au développement
de plus en plus de plateformes IoT qui, toujours dans l’esprit du paradigme Sensor Web, sont
destinées à combler le fossé existant entre les capteurs et les applications. Comparées aux
premiers middlewares pour capteurs, ces plateformes IoT peuvent être vues comme une
nouvelle génération de Sensor Webs embarquant davantage d’intelligence et susceptibles
d’intégrer de nouveaux types de capteurs (par exemple des capteurs virtuels). Etant donné
leurs fonctionnalités, cette nouvelle génération de Sensor Webs peut dispenser les applications
d’évaluer la QoO ou de réaliser des traitements coûteux en termes de ressources sur les
observations reçues, leur permettant de se concentrer sur leurs propres fonctionnalités et
services à valeur ajoutée.

Depuis l’émergence de l’IoT, de nombreuses plateformes d’intégration [16, 17, 18] ont été
développées afin de gérer l’hétérogénéité des capteurs. La plupart des ces plateformes [14, 19]
utilisent généralement le patron de conception logiciel Adaptateur [20] afin d’intégrer de nou-
veaux capteurs. Cependant, cette approche peut aussi masquer certaines des fonctionnalités
des capteurs. Afin de résoudre ce problème, il est devenu chose courante d’intégrer les capteurs
avec l’aide d’adaptateurs tout en décrivant leur fonctionnalités en utilisant des ontologies.
Cette tendance a suscité le développement de nombreux Sensor Webs sémantiques (Semantic
Sensor Webs ou SSW en anglais) [21, 22] dans lesquels l’ontologie W3C SSN [23] s’est imposée
comme un standard de référence. Ainsi, les SSW permettent l’ajout et/ou le retrait dynamique
de capteurs (fonctionnalité plug-and-play), adressant partiellement les problématiques liées
à l’intégration et à l’auto-(re)configuration. Finalement, peu de Sensor Webs mentionnent
l’hétérogénéité des besoins applicatifs, pouvant donner lieu à des requêtes similaires mais avec
des contraintes différentes en termes de QoO de la part des consommateurs d’observations.

En ce qui concerne la QoO, plusieurs standards ont été proposés pour essayer d’unifier la
définition et le sens d’attributs relatifs à la qualité. Le standard ISO 8000 [24] a été défini par
l’Organisation internationale de normalisation (ISO) pour la Qualité des Données. Cependant,
il n’est pas applicable aux Sensor Webs puisqu’il considère seulement la valeur commerciale
d’une observation. Le standard Common Data Model Encoding a lui été proposé par l’OGC
pour préciser l’encodage des observations dans la spécification SWE 2.0 [25]. Il mentionne
la possibilité d’annoter une mesure de capteur avec “n’importe quelle donnée scalaire, sous
la forme d’un nombre ou d’un intervalle numérique” [25]. Cependant, ce standard ne précise
pas quels attributs en particulier doivent être utilisés ni comment ils doivent être choisis ou
calculés. Enfin, le standard ISO 19157 [26] définit des attributs et des procédures pour la qualité
des informations géographiques. Même si l’utilisation de ce standard peut être adaptée pour
certains Sensor Webs, il demeure extrêmement rare en pratique qu’une solution utilise à la fois
les standards OGC SWE et ISO. Par ailleurs, le fait que la plupart des standards ISO ne soient
pas consultables gratuitement limite leur adoption. Par conséquent, beaucoup de solutions

6. http://52north.org/communities/sensorweb

8

http://52north.org/communities/sensorweb

1.4. Approches Existantes

Sensor Webs [27] définissent généralement leurs propres attributs de qualité, déléguant la
gestion de la QoO aux applications.

Finalement, l’adaptation au sein des Sensor Webs a principalement été réalisée en utili-
sant des informations de Contexte : ces solutions sont alors qualifiées de systèmes Context-
aware [28]. Les systèmes Context-aware peuvent être définis comme des systèmes réagissant
à des informations de Contexte reçues, collectées ou analysées. Cependant, plusieurs défi-
nitions ont été proposées pour la notion de Contexte, la plupart étant trop génériques ou
pas assez précises. Par exemple, Dey a défini la notion de Contexte comme “n’importe quelle
information pouvant être utilisée afin de caractériser la situation d’une entité. Une entité est une
personne, un lieu ou un objet pouvant être considéré comme pertinent pour l’interaction entre
un utilisateur et une application, ce qui inclut l’utilisateur et les applications eux-mêmes” [29].
En outre, puisque le Contexte représente une ressource requise par beaucoup de Sensor Webs
pour mieux interpréter les observations reçues, il doit donc être de “bonne qualité”. Pour cette
raison, de nombreux travaux se sont intéressés à la Qualité du Contexte (Quality of Context
ou QoC en anglais), pouvant être considérée comme un autre terme pour désigner la QoO
appliquée à des information de Contexte. La paradigme de l’Autonomic Computing (AC) [30]
est une autre approche pour l’implémentation de systèmes dits Context-aware. Ce paradigme
repose sur la définition d’une ou de plusieurs boucles de contrôle adaptatives basées sur
des informations de Contexte et régies par des besoins haut-niveau (dits business). Dans les
systèmes autonomiques, l’adaptation est souvent réalisée en utilisant le modèle de la boucle
MAPE-K (pour Monitoring, Analysis, Plan, Execution et Knowledge base en anglais). Jusqu’à
présent, le paradigme AC a principalement été appliqué à la conception de bases de don-
nées intelligentes et de serveurs intelligents [31], à la gestion de la QoS dans les bus logiciels
d’entreprise (ESB) [32], à la gestion du passage à l’échelle dans des environnements Machine-
to-Machine (M2M) [33], ou récemment pour le raisonnement cognitif dans le domaine de la
santé [34].

Tandis que le domaine de recherche autours des capteurs présente un futur prometteur,
nous remarquons aussi que la plupart des middlewares ou des plateformes IoT ne respectent
pas entièrement la philosophie du paradigme Sensor Web. En particulier, l’accent n’est pas
suffisamment mis sur 1) l’intégration de nouveaux types de capteurs tels que les capteurs
virtuels, 2) l’expression des besoins des consommateurs en QoO de façon interopérable ainsi
que les mécanismes pour fournir ces garanties et 3) l’adaptation en fonction des ressources
disponibles ou de la QoO pour répondre à l’évolution dynamique du Contexte. Pour pallier
à ces déficiences, cette thèse propose le développement de Sensor Webs adaptatifs basés
sur la QoO (abrégés QASWS par la suite) comme des solutions Sensor Webs capable de ré-
pondre simultanément à ces trois problématiques de recherche (intégration, QoO, adaptation
système), aidant à comblant le fossé entre les producteurs d’observations (que ce soit des
capteurs physiques, logiques ou virtuels) et les consommateurs d’observations (applications
ou utilisateurs).

9

Chapitre 1. Introduction Générale

1.5 Contributions Scientifiques

Les trois problématiques de recherche identifiées dans cette thèse appartiennent à des
domaines de recherche distincts. Par conséquent, cette thèse peut être considérée comme
une thèse pluridisciplinaire visant à réconcilier l’Ingénierie logicielle (problématiques liées à
l’Intégration), la gestion de la Qualité des Données (QoO) ainsi que l’adaptation basée sur le
Contexte (Adaptation Système). La Figure 1.2 présente les Sensor Webs adaptatifs basés sur la
QoO (QASWS) comme un type de solution né de la rencontre de ces trois domaines. C’est la
principale approche retenue dans la suite de cette thèse afin de répondre aux problématiques
précédemment identifiées.

Gestion de la
Qualité des

Données

Ingénierie
logicielle

Adaptation
basée sur le

Contexte

QASWS

FIGURE 1.2 – Les trois principaux domaines de recherche de cette thèse. L’abréviation “QASWS”
désigne des Sensor Webs adaptatifs basés sur la QoO, ou QoO-aware Adaptive Sensor Web
Systems en anglais.

Notre première contribution scientifique est un framework générique pour Sensor Webs
adaptatifs basés sur la QoO (QASWS). Ce framework est principalement destiné aux chercheurs
et développeurs désirant concevoir un nouveau QASWS ou désirant étudier une solution
Sensor Web existante. Il fournit plusieurs concepts et ressources afin de répondre aux problé-
matiques de recherche identifiées. Les trois pierres angulaires de notre framework sont : 1) un
modèle de référence présentant les concepts clefs utilisés ; 2) une architecture de référence
présentée avec l’aide de plusieurs vues ; et 3) un ensemble de bonnes pratiques pouvant aider
à la dérivation concrète d’implémentations de QASWS.

Notre deuxième contribution scientifique est une instanciation concrète de notre frame-
work générique afin d’implémenter une solution Sensor Web adaptative basée sur la QoO. Par
conséquent, nous proposons une plateforme d’intégration pour l’évaluation de la QoO à la
demande (nommée iQAS). Le développement d’un tel prototype fut motivé par une analyse
approfondie de la gestion de la QoO dans une sélection de solutions Sensor Webs existantes.

10

1.5. Contributions Scientifiques

Cette étude nous a permis d’identifier de nombreux manques qui ont ensuite motivé la concep-
tion et le développement de la plateforme iQAS. L’évaluation de notre plateforme iQAS a été
réalisée selon les trois problématiques de recherche précédemment identifiées (intégration,
QoO, adaptation). Par la suite, nous avons imaginé trois scénarios de déploiement (pour des
villes intelligentes, le Web of Things et pour des environnements sinistrés) où la QoO peut
être une notion difficile à garantir. Dans l’ensemble, les différentes évaluations ont montré
que les futurs Sensor Webs devront être adaptatifs et conscients de la QoO. Par ailleurs, nous
anticipons le fait que la QoO devienne une notion de plus en plus critique pour de nombreux
systèmes basés sur des capteurs. Sur ce point, nous pensons que iQAS peut contribuer à cette
prise de conscience en jouant un rôle éducatif. Enfin, en tant que plateforme collaborative,
iQAS replace les humains et les experts du domaine au cœur du processus d’adaptation, ce
qui se traduit par des décisions plus pertinentes.

11

Chapitre 2
Framework Générique pour Sensor
Webs Adaptatifs basés sur la QoO

2.1 Introduction

Malgré le développement de nombreux frameworks destinés aux Sensor Webs, de nou-
veaux systèmes non-standardisés sont régulièrement développés par les chercheurs qui re-
partent alors de zéro. Comme précédemment mentionné, cette tendance est surtout due
à la complexité d’utilisation des standards existants (comme les spécifications OGC SWE)
ou le manque de fonctionnalités dans les frameworks existants (par exemple concernant la
sémantique et la QoO).

Ce chapitre présente la première contribution de cette thèse, qui est un framework gé-
nérique pour la conception, le développement et le déploiement de Sensor Webs adaptatifs
basés sur la QoO (QASWS). Ce framework pour QASWS a été développé avec un souci de géné-
ricité, de telle manière qu’il puisse être appliqué par la suite à différents cas d’utilisation et/ou
scénarios de déploiement. Afin de ne pas réinventer la roue, nous nous sommes basés sur le
standard ISO/IEC/IEEE 42010 pour présenter notre framework et proposer des descriptions
architecturales pouvant par la suite être utilisées en ingénierie logicielle [35, 36].

2.2 Modèle de Référence pour les QASWS

Le modèle de référence pour les QASWS est le premier composant de notre framework gé-
nérique. Il est composé de 4 sous-modèles : le modèle Fonctionnel, le modèle d’Adaptation, le
modèle de Domaine et le modèle pour les Observations. Il introduit la terminologie commune
et les concepts que nous réutiliserons pour décrire les autres composants de notre framework.

2.2.1 Modèle Fonctionnel

Le modèle fonctionnel résume les principales exigences de notre framework générique.
Il est destiné à illustrer de manière conceptuelle les différentes interactions possibles entre

12

2.2. Modèle de Référence pour les QASWS

un Sensor Web et ses producteurs et consommateurs d’observations. En plus des couches
Capteur et Application (voir Figure 1.1), il identifie quatre couches intermédiaires que tout
QASWS devrait implémenter :

Couche Donnée Brute Cette couche transforme les mesures des capteurs en données brutes.
Ces données brutes peuvent être directement envoyées aux consommateurs d’observa-
tions ou à la couche Information.

Couche Information Cette couche est chargée d’enrichir les données brutes avec des attri-
buts de Contexte afin de produire des informations. Ces informations peuvent être
directement envoyées aux consommateurs d’observations ou à la couche Sémantique.

Couche Sémantique En s’appuyant sur un modèle d’ontologie, cette couche est chargée
d’annoter les informations de manière sémantique afin de produire des connaissances.
Ensuite, ces connaissances peuvent être directement envoyées aux consommateurs
d’observations.

Couche Gestion & Adaptation Cette couche est transverse et peut communiquer avec les
trois couches précédentes. Son rôle est d’assurer une adaptation dynamique basée sur
les QoO actuellement observées. Cette couche gère aussi l’acceptation des différentes
requêtes des consommateurs et fournit des informations de rétrocontrôle concernant
les décisions relatives à l’adaptation. Selon les stratégies utilisées, l’adaptation peut
impliquer le déploiement de mécanismes courants ainsi que l’envoi d’actions à effectuer
à des actionneurs dans le cas des SANETs.

2.2.2 Modèle d’Adaptation

Le modèle d’adaptation vise à détailler les différentes stratégies d’adaptation de la couche
Gestion & Adaptation du modèle fonctionnel. Comme dit précédemment, les QASWS pos-
sèdent la faculté de modifier leur comportement interne afin de s’adapter. Lorsque les consom-
mateurs finaux expriment des contraintes en termes de QoO, ces systèmes peuvent être ame-
nés à traiter les observations de manière spécifique, ce qui peut conduire à la création de
pipelines d’observations dynamiques avec des niveaux de qualité différents.

Le modèle d’adaptation définit un “mécanisme courant” comme un morceau de code
informatique réutilisable pouvant être appliqué à une ou plusieurs observations, provoquant
une transformation de ces observations. En outre, il distingue deux types de mécanismes
courants (voir Figure 2.1). D’un côté, le terme “mécanismes propres à une couche” désigne
sont ceux qui sont fortement couplés au niveau d’observation demandé. D’autre part, les
“mécanismes QoO” sont des mécanismes plus génériques destinés à ajuster le niveau de
QoO (lorsque c’est possible) pour un consommateur donné ayant exprimé un SLA (requête
d’observations).

Les QASWS permettent à des experts du domaine d’utiliser ces différents blocs afin de
définir de nouveaux QoO Pipelines, permettant au système d’offrir une adaptation dynamique
basée sur la QoO de manière spécifique à chaque consommateur. Dans ce but, le modèle
d’Adaptation propose une caractérisation du service offert par six mécanismes de QoO (Fil-
trage, Mise en Cache, Formatage, Fusion, Agrégation, Prédiction) couramment utilisés dans
les Sensor Webs.

13

Chapitre 2. Framework Générique pour Sensor Webs Adaptatifs basés sur la QoO

Filtrage

ConnaissancesInformationsDonnées
brutes

Légende
Garanties QoS réseau

Annotation Contexte

Calcul de la QoI

Annotation sémantique
des observations

Description sémantique
des capteurs

Prédiction

Agrégation

Fusion

Formatage

Mise en cache

Mécanismes propres
à une couche

Mécanismes de
QoO

Mécanismes
courants

FIGURE 2.1 – Les mécanismes courants regroupent les mécanismes propres à une couche et
les mécanismes de QoO

2.2.3 Modèle de Domaine

Le modèle de domaine décrit les concepts clefs d’un QASWS. Certains d’entre eux se rap-
portent à des entités physiques tandis que d’autres sont des processus ou concepts plus
abstraits. En particulier, ce modèle définit les notions de producteur d’observations, de
consommateur d’observation, de Sensor Web, mécanisme de QoO, de QoO Pipeline ainsi que
d’adaptation basée sur la QoO.

Les mécanismes de QoO peuvent être considérés comme des fonctions de transformation
directement appliquées sur les flux d’observations afin d’ajuster la QoO. Afin de préserver
l’ordre des observations, les mécanismes de QoO doivent traiter les observations reçues selon
la méthode du “premier entré, premier sorti” (First In First Out ou FIFO), éventuellement en
faisant intervenir un mécanisme de fenêtre glissante et de mise en cache lorsque la trans-
formation nécessite plusieurs observations. Les QoO Pipelines sont le résultat de plusieurs
mécanismes de QoO mis bout-à-bout (voir Figure 2.2). Par conséquent, les QoO Pipelines
peuvent être assimilés à des composants appliquant une succession de transformations à
leurs observations, selon le même principe que la composition de fonctions en mathéma-
tiques (h(x) = f (g (x)) = f ◦ g (x)).

QoO Pipeline

entrée
QoO

méca.
#2

sortie
QoO

méca.
#n-1

QoO
méca.

#3

FIGURE 2.2 – Relation entre les mécanismes de QoO et les QoO Pipelines : les mécanismes
de QoO sont des composants réutilisables pouvant être mis bout-à-bout afin de traiter les
observations de manière séquentielle, ce qui forme un QoO Pipeline. “méca.” = mécanisme.

14

2.2. Modèle de Référence pour les QASWS

2.2.4 Modèle pour les Observations

Le modèle pour les observations définit la structure des observations que les QASWS
peuvent être amenés à recevoir et à traiter. Il est important de noter que ce modèle n’a pas
pour objectif de décrire le format de représentation des observation (binaire, XML, JSON, etc.)
qui représente un choix d’implémentation devant être réalisé plus tard.

Niveaux de granularité des observations Inspiré par l’échelle DIKW formalisée par Sheth [37],
ce framework distingue aussi plusieurs niveaux de granularité pour les observations. Afin d’être
applicable à un maximum de Sensor Webs, nous avons cependant choisi de ne considérer que
les trois premiers niveaux d’observations (c’est à dire Raw Data, Information and Knowledge).
Par conséquent, nous considérons que la Connaissance (Knowledge) et le Savoir (Wisdom) ne
forment qu’un seul et même niveau.

Données Brutes (niveau 1, Raw Data) Le premier niveau de granularité correspond aux Don-
nées Brutes provenant directement des capteurs. Elles sont généralement représentées
sous la forme d’une succession de clefs/valeurs et ne contiennent pas d’informations
supplémentaires. Ce type d’observations ne requiert pas de la part des Sensor Webs de
collecter des données additionnelles concernant le Contexte de la mesure.

Informations (niveau 2, Information) Le deuxième niveau de granularité correspond aux
Informations, qui sont en réalité des Données Brutes ayant été enrichies avec des
informations de Contexte. Pour obtenir de telles observations, les Sensor Webs peuvent
collecter des informations de Contexte additionnelles de plusieurs manières (via une
base de données externe, avec un middleware spécialisé, via l’API d’un capteur, etc.).

Connaissances (niveau 3, Knowledge) Le troisième et dernier niveau est atteint avec l’utilisa-
tion de la sémantique. En adoptant une annotation sémantique grâce aux ontologies, les
Sensor Webs peuvent modéliser des observations se rapportant à un domaine d’intérêt
et produire des observations compréhensibles par d’autres systèmes d’information.
Nous appelons Connaissance toute observation ayant été annotée selon un modèle
sémantique d’ontologie. Ce niveau de granularité requiert aussi des informations de
Contexte. Par conséquent, les Connaissances sont souvent dérivées à partir d’Informa-
tions puisque celles-ci contiennent déjà plusieurs attributs de Contexte.

En résumé, ce framework considère que des Informations peuvent être construites à partir
de Donnée Brutes et d’informations de Contexte. Par la suite, ces Informations peuvent être
réutilisées pour produire des Connaissances moyennant l’utilisation d’ontologies et d’un
modèle sémantique d’ontologie.

Qualité des Observations Un autre objectif du modèle pour les observations est d’expliquer
les différentes relations existantes entre les dimensions pour la Qualité. Par exemple, la QoS
réseau impacte toute les autres dimensions puisqu’elle affecte le transport des observations
des capteurs jusqu’aux Sensor Webs, et des Sensor Webs jusqu’aux consommateur finaux.
La Figure 2.3 fait le lien entre les niveaux de granularité des observations et les différentes
dimensions pour la Qualité. En accord avec le modèle de domaine, le modèle pour les obser-
vations considère la QoS comme la combinaison de la QoS réseau et des attributs relatifs à la

15

Chapitre 2. Framework Générique pour Sensor Webs Adaptatifs basés sur la QoO

QoO. Par conséquent, la QoS réseau et la Qualité des Données (Data Quality ou DQ) devraient
préférablement être gérées au niveau des Données Brutes, la Qualité des Informations (Quality
of Information ou QoI) et celle du Contexte (QoC) au niveau Informations et la Qualité des
Connaissances (Quality of Knowledge ou QoK) au niveau Connaissances.

Notre framework considère la “Qualité des Observations” (QoO) comme un concept géné-
rique qui englobe les dimensions autres que la QoS réseau (c’est à dire la DQ, la QoI, la QoC
et la QoK). Ceci nous permet de faire une claire distinction entre les attributs de Contexte et
ceux de QoO : alors que les attributs de Contexte font partie intégrante d’une Information, un
attribut de QoO est n’importe quelle métrique utilisée pour mieux caractériser la valeur d’une
observation (enrichie ou non avec des attributs de Contexte).

Quality of
Information

QoC

Data Quality

Quality of Knowledge

QoS réseau

Qualité de
Service

Qualité des
Observations

Données
Brutes

Informations

Connaissances

Niveaux de granularité des
observations

Dimensions pour la
Qualité

FIGURE 2.3 – Niveaux de granularité des observations et dimensions pour la Qualité considérés
par les QASWS

L’ontologie QoOnto L’ontologie QoOnto (voir Figure 2.4) fait le lien entre les concept de
producteurs d’observations, les services, les observations et leur QoO. Elle réutilise les travaux
existants (en important des concepts du standard W3C SSN et de l’ontologie IoT-Lite) afin de
ne pas réinventer la roue, satisfaisant les bonnes pratiques définies dans le cadre des Linked
Data 1.

2.3 Architecture de Référence pour les QASWS

L’architecture de référence est le second composant de notre framework générique. Suivant
les recommandations du standard ISO/IEC/IEEE 42010, nous décrivons quatre vue architec-
turales répondant à des problématiques précises que peuvent se poser les différents acteurs
impliqués dans la conception d’un QASWS. Ainsi, la vue Fonctionnelle se concentre sur les
problématiques liées à l’Intégration, la vue Observations met l’accent sur la QoO tandis que la
vue Adaptation décrit l’implémentation de stratégies pour assurer l’adaptation système. Enfin,
la vue Déploiement fait le lien entre les différents modèles et relie les observations, les services
à valeur ajoutée et les différents acteurs gravitant autour des QASWS.

1. http://linkeddata.org

16

http://linkeddata.org

2.3. Architecture de Référence pour les QASWS

qoo:isAbout
...

m3-lite:Temperature

...

m3-lite:DegreeCelsius

qu:QuantityKind

qu:Unit

qoo:QoOIntrinsicValueqoo:QoOValue
- qooStrValue : String

qoo:QualityOfObservation qoo:QoOPipeline

qoo:QoOCustomizableParameter
- qoo:documentation : String
- qoo:paramType : String
- qoo:paramMinValue : String
- qoo:paramMaxValue : String
- qoo:paramInitialValue : String

qoo:QoOAttribute
- qoo:shouldBe : Variation

...

ssn:FeatureOfInterest

ssn:ObservationValue
- qoo:obsDateValue : String
- qoo:obsTimestampsValue : String
- qoo:obsLevelValue : ObservationLevel
- qoo:obsStrValue : String

ssn:SensorOutput

ssn:Property

qoo:QoOEffect
- qoo:paramVariation : String
- qoo:qooAttributeVariation : String

ssn:MeasurementRange

ssn:MeasurementCapability

ssn:MeasurementProperty
- qoo:hasExactValue : String
- qoo:hasMinValue : String
- qoo:hasMaxValue : String

ssn:Observation

iot-lite:Coverage

iot-lite:Service
iot-lite:interfaceType : String
iot-lite:endpoint : String
iot-lite:interfaceDescription : String

ssn:Platform

ssn:System

ssn:Device

geo:Point
- geo:lat : String
- geo:long : String
- geo:alt : String
- iot-lite:altRelative : String
- iot-lite:relativeLocation : String

ssn:SensingDevice ssn:Sensor
- qoo:sensor_id : String
- qoo:sensorStateValue : String

iot-lite:hasUnit
1

qoo:hasQuantityKind

1

iot-lite:has
QuantityKind

1

qoo:
canBeRetrieved

Through

0..*

qoo:hasUnit

1

qoo:hasQoOValue
1

1

qoo:hasQoO
0..*

qoo:increases
qoo:decreases
qoo:neutralFor

0..*

qoo:allowsToSet
0..*

qoo:has

0..*
qoo:impacts
0..*

ssn:featureOfInterest

0..*

ssn:hasValue
0..*

ssn:observationResult
0..*

ssn:observedProperty
0..*

ssn:madeObservation
0..*

qoo:has
0..*

ssn:has
Measurement

Capability

0..*

ssn:has
Measurement
Property

0..*

geo:location
0..1

iot-lite:hasCoverage
0..1

qoo:offers
0..*

iot- l i te:
exposedBy

0..*

ssn:attachedSystem
0..*

qoo:isInTheAreaOf
0..*

geo:location
1

FIGURE 2.4 – Aperçu de l’ontologie QoOnto. Les concepts et relations commençant par “qoo”
ont été créés par nos soins. Les couleurs sont arbitraires et servent uniquement à distinguer
les différentes importations/espaces-noms.

2.3.1 Vue Fonctionnelle

La vue fonctionnelle réutilise le modèle fonctionnel et répond à certaines problématiques
liées à l’Intégration. Pour cela, nous considérons les capteurs et les applications comme étant
les principales entités à intégrer, en tant que producteurs ou consommateurs d’observations,
respectivement.

Les mécanismes courants ont été positionnés au niveau des couches où ils sont le plus
susceptibles d’être mis en œuvre. Par conséquent, chaque mécanisme propre à une couche
appartient à une couche spécifique tandis que les mécanismes de QoO ont été position-
nés de manière transverse pour représenter le fait qu’ils peuvent être appliqués à n’importe
quel niveau d’observation. Les deux exigences propres aux couches Information et Séman-
tique (Contexte et modèle sémantique d’ontologie, respectivement) sont aussi mentionnés.
Concernant les différents composants de la couche Gestion & Adaptation, nous retrouvons
différents Autonomic Managers (AM) dont le rôle est de traduire les besoins haut-niveau en
requêtes compréhensibles pour chaque couche associée. Une requête requiert donc une active
coopération de la part de ces AMs afin de permettre le déploiement d’un pipeline d’observa-
tions répondant à un SLA spécifique. Lorsqu’un SLA n’est plus satisfait en termes de QoO, les
AMs doivent être capables de déterminer si un QoO Pipeline (ou plusieurs si la composition est
possible) peut être déployé afin de garantir à nouveau le SLA (boucle de contrôle adaptative).
Cette stratégie garantie une adaptation basée sur la QoO actuellement observée, de manière
spécifique à chaque requête.

17

Chapitre 2. Framework Générique pour Sensor Webs Adaptatifs basés sur la QoO

Couche Capteur

Couche Sémantique

Couche Information

Couche Données Brutes

Données Brutes

Informations

Connaissances

Couche Application

M
ise en cache, Fusion, Form

atage,
A

grégation, Filtrage, P
rédiction

Annotation des
observations

Annotation
Contexte Calcul de la QoI

Garanties
QoS réseau

Description des
capteurs

Contexte

Mesures de capteurs

Modèle
sémantique
d’ontologie AM

#3

AM
#2

AM
#1

API
Adaptation

(*) SANETs
seulement

SLAs

Rétrocontrôle

FIGURE 2.5 – Vue fonctionnelle pour les QASWS. “AM” = Autonomic Manager.

2.3.2 Autres Vues Architecturales

Les autres vues architecturales concernent les observations, l’adaptation et le déploiement.
La vue Observations décrit les différents échanges de données (SLAs et observations) à

l’intérieur des QASWS. En particulier, cette vue précise les différentes étapes correspondant à
la prise en compte d’une requête, de la réception d’un nouveau SLA jusqu’au déploiement
d’un pipeline d’observations.

La vue Adaptation décrit plus en détail les différentes stratégies d’adaptation d’un QASWS
(auto-(re)configuration, reconfiguration structurelle et reconfiguration comportementale).
Elle réutilise activement les modèles de domaine et d’adaptation, en s’appuyant sur les notions
de mécanismes de QoO et de pipelines d’observations. Comme toute adaptation système est
toujours effectuée pour une requête donnée et selon certaines conditions, nous basons la
description de cette vue en prenant un exemple de scénario concret.

La vue Déploiement résume la plupart des concepts introduits dans les précédentes vues
architecturales. Elle réutilise les quatre modèles introduits jusqu’à présent (fonctionnel, adap-
tation, domaine, observations) pour faire le lien entre les observations, les services à valeur
ajoutée et les différents acteurs gravitant autour des QASWS. La Figure 2.6 montre un exemple
de déploiement pour un QASWS.

2.4 Bonnes Pratiques de Référence pour les QASWS

Les bonnes pratiques de référence pour les QASWS constituent le dernier composant de
notre framework générique. Appliquées à des cas d’utilisation concrets, ces lignes directrices
sont destinées à faciliter la dérivation d’implémentations concrètes à partir des modèles et

18

2.4. Bonnes Pratiques de Référence pour les QASWS

FIGURE 2.6 – Exemple de déploiement pour un QASWS. Les éléments jaunes sont relatifs
aux fonctions commerciales ; les éléments bleus des composants logiciels ; les éléments verts
correspondent à des entités physiques.

des vues architecturales de référence.
Ces bonnes pratiques proviennent principalement des solutions Sensor Webs étudiées

dans le cadre de notre état de l’art. Plus tard, nous les avons aussi enrichies en nous basant
sur notre propre expérience de développement d’une solution QASWS (voir chapitre suivant).
Ces bonnes pratiques sont donc empiriques et doivent donc être considérées en tant que
tel. Ces lignes directrices sont destinées à illustrer et faciliter l’utilisation de notre framework
générique en fournissant des recommandations ou des réponses aux questions fréquemment
posées par les développeurs lorsqu’ils utilisent un framework IoT. Elles couvrent notamment
les thèmes suivants :

— Choix technologiques généraux

— Choix architecturaux

— Formatage des observations et caractérisation de la QoO

— Sémantique et ontologies

— Stockage et rétention des observations

— Adaptation système

— Déploiement

— Performances et évaluation

19

Chapitre 3
iQAS : une Plateforme d’Intégration
pour l’Évaluation de la Qualité des
Observations à la Demande

3.1 Introduction

Les limites des solutions Sensor Webs existantes ont motivé la proposition d’un frame-
work générique destiné à promouvoir le développement de nouveaux QASWS. Cependant,
nous pensons que la proposition d’un prototype instanciant ce même framework peut aussi
être d’intérêt pour les chercheurs et développeurs. En particulier, cela peut représenter une
opportunité pour décrire et expliquer plusieurs choix critiques (langage de programmation,
architecture, logiciels utilisés, etc.) qui ont été laissés de côté par notre première contribution.
En outre, une telle preuve de concept permet aussi de décrire plusieurs phases du cycle du
développement logiciel d’un QASWS comme par exemple sa conception, son implémentation
ou encore son déploiement.

En conséquence, ce chapitre présente la deuxième contribution de cette thèse, qui est une
plateforme d’intégration pour l’évaluation de la Qualité des Observations à la demande (abré-
gée iQAS en anglais). iQAS est un Sensor Web entièrement développé par nos soins et basé sur
notre framework générique pour QASWS. En ce qui concerne ses fonctionnalités, la plateforme
iQAS se focalise donc sur les trois problématiques de recherche à savoir l’intégration, la QoO
et l’adaptation système.

3.2 Instanciation de notre Framework Générique pour QASWS

La Figure 3.1 présente la méthode suivie pour réaliser le passage de notre framework
générique à un prototype fonctionnel répondant aux exigences propres des QASWS.

En ce qui concerne les choix d’implémentation de iQAS, nous avons décidé de nous

20

3.3. Conception

Framework Générique

Modèle de référence
pour les QASWS

Architecture de référence
pour les QASWS

Bonnes pratiques
pour les QASWS

Exigences haut-niveau

Problématiques

Acteurs

Cas d’utilisation

Exigences spécifiques

Système
d’intérêt

instanciation

Choix
d’implémentation

FIGURE 3.1 – Méthode suivie pour l’instanciation d’une implémentation concrète à partir de
notre Framework Générique pour QASWS

baser sur la programmation orientée composant 1 appliquée au modèle d’Acteur [38]. Afin
de correctement traiter les flux infinis d’observations, notre plateforme respecte l’approche
Reactive Streams 2 et a été implémentée en utilisant le langage de programmation Java 1.8 [39].
Afin d’accélérer le processus de développement, nous nous sommes appuyés sur la librairie
Akka 3 qui fournit une implémentation du modèle d’Acteur prêt à l’emploi. MongoDB 4 a été
utilisée en tant que base de données orientée documents pour stocker la configuration et
l’état de iQAS à un instant t. Pour le stockage des observations, nous avons utilisé l’agent
de messages Apache Kafka [40] afin d’assurer la distribution des observations de manière
asynchrone suivant le mécanisme publier-souscrire [41]. Enfin, Apache Jena 5 et Apache Fuseki
ont été utilisés pour stocker les modèles d’ontologies et mettre en place un serveur SPARQL
capable de répondre aux requêtes de la plateforme iQAS.

3.3 Conception

La Figure 3.2 présente une vue d’ensemble de la plateforme. iQAS comble le fossé entre les
capteurs (à gauche sur la figure) et les applications (côté droit). Chaque capteur doit publier
ses observations vers une queue de message Kafka spécifique (appelé topic Kafka) selon le type

1. https://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_composant
2. Plus d’informations sur http://www.reactive-streams.org et http://www.reactivemanifesto.org
3. http://akka.io
4. https://www.mongodb.com
5. https://jena.apache.org

21

https://fr.wikipedia.org/wiki/Programmation_orient%C3%A9e_composant
http://www.reactive-streams.org
http://www.reactivemanifesto.org
http://akka.io
https://www.mongodb.com
https://jena.apache.org

Chapitre 3. La plateforme iQAS

de propriété qu’il mesure (température, visibilité, etc.). En ce qui concerne les capteurs, nous
avons développé une image Docker 6 permettant de créer des Virtual Sensor Containers (VSCs).
Cela assure une meilleure intégration tout en garantissant l’abstraction des différents capteurs.

Boucle
MAPE-K

Rapport
de QoO

Rapport
de fréq.
des obs.

appli1_58d39df

température,
visibilité,

humidité, etc.

appli1

Capteurs physiques, logiques
ou virtuels

Pipeline
d’entrée #1

Pipeline
d’entrée #2

QoO Pipeline
#1

Pipeline
d’entrée #3

appli2

appli3

appli4

appli2_46d69df

appli3_95d39df

appli4_aad39df

Pipeline de
sortie #1

Pipeline de
sortie #3

Pipeline de
sortie #4

Pipeline de
sortie #2

Stockage
propre à

iQAS

Stockage
des modèles
d’ontologies

GUI

API

Pipeline
spécial #3

FIGURE 3.2 – Vue d’ensemble de la plateforme iQAS, une solution QASWS qui comble le fossé
entre les capteurs et les applications

Les applications et les utilisateurs peuvent soumettre de nouvelles requêtes (c’est à dire
des SLAs avec des contraintes optionnelles en termes de QoO) en utilisant l’API ou via la GUI,
respectivement. La réalisation d’une requête implique le déploiement de plusieurs pipelines
d’observations (par exemple les pipelines d’entrée et les pipelines de sortie sur la figure) ainsi
que de QoO Pipelines optionnels (QoO Pipeline, pipeline spécial). Au final, ces différents
composants peuvent être vus comme un graphe avec différentes étapes de transformation.
Chaque pipeline est implémenté grâce à un Acteur qui traite les observations d’un topic Kafka
avant de les republier dans le topic Kafka suivant. Cette abstraction favorise la modularité
et l’extension des graphes d’observations de manière incrémentale puisque des étapes de
transformation peuvent être réutilisées pour satisfaire de nouvelles requêtes.

3.4 Implémentation

3.4.1 Caractérisation de la QoO

Pour l’instant, notre plateforme utilise trois attributs pour la caractérisation de la QoO.
Afin d’éviter toute ambiguïté, nous donnons la définition retenue pour chacun d’entre eux et
nous explicitons la manière dont ils sont calculés par la plateforme iQAS :

— OBS_ACCURACY correspond à la distance entre une observation rapportée et son évé-
nement/phénomène correspondant. Dans les cas de la plateforme iQAS, certaines
observations reçues peuvent ne correspondre à aucun événement ou phénomène. Ceci

6. https://www.docker.com

22

https://www.docker.com

3.4. Implémentation

est particulièrement vrai lorsque les observations sont générées aléatoirement par les
VSCs, rendant le calcul de cette métrique difficile. Afin de déterminer la précision des
observations – y compris pour des observations simulées aléatoirement – nous nous
basons sur les ontologies et les capacités des capteurs. En effet, puisque tout nouveau
capteur connecté à iQAS doit être défini avec l’ontologie QoOnto, nous utilisons le
domaine de mesure du capteur en question (measurement range) afin de déterminer
la précision d’une observation. Pour une observation donnée, la précision est donc
donnée par :

OBS_ACCU R AC Y =

100 si obsmi n ≥ obs ≥ obsmax

0 si di st ≥ obsr ang e

obsr ang e −di st

obsr ang e
sinon

(3.1)

où obsmi n et obsmax sont les bornes du domaine de mesure (obsr ang e) tel que :

obsr ang e = obsmax −obsmi n (3.2)

di st =
{

obsmi n −obs si obs < obsmi n

obs −obsmax si obs > obsmax
(3.3)

— OBS_FRESHNESS correspond à l’âge d’une observation juste avant que la plateforme
iQAS ne la publie dans le dernier topic Kafka (appelé topic “puits” ou sink topic). Ajoutée
à chaque observation, cette métrique mesure la latence additionnel due 1) au temps de
transport réseau et 2) au temps de traitement par la plateforme iQAS. Elle est calculée
de la manière suivante : currentTimeMillis - observationProductionDate.

— OBS_RATE correspond au nombre d’observations délivrées par unité de temps. Cet attri-
but correspond au débit de iQAS pour une requête donnée (par exemple, 3/seconde). Il
est calculé par la plateforme en comptant le nombre d’observations qui sont effective-
ment publiées dans le topic “puits” pour une requête donnée. À la différence des deux
attributs précédents, cette métrique est associée à un flux d’observations plutôt qu’à une
seule observation. Pour cette raison, la plateforme n’est pas en mesure d’annoter chaque
observation avec cet attribut de QoO. Néanmoins, iQAS permet aux consommateurs de
soumettre des SLAs avec des besoins spécifiques en termes de OBS_RATE.

Au sein de iQAS, la caractérisation est réalisée juste avant qu’une observation soit rendue
disponible aux consommateurs finaux (c’est à dire publiée dans le topic “puits” Kafka assi-
gné à une requête donnée). Cependant, il convient également de mentionner que certains
attributs de QoO doivent être recalculés au cours du temps afin de rester valides (l’âge d’une
observation par exemple). Dans ce cas précis, il est de la responsabilité des consommateurs
finaux d’effectuer cette tâche.

3.4.2 Adaptation Système

iQAS se base en grande partie sur la QoO actuellement délivrée pour décider des stratégies
d’adaptation à mettre en œuvre. Les contraintes en termes de QoO sont évaluées par iQAS

23

Chapitre 3. La plateforme iQAS

dans un second temps, une fois que la requête a été déployée avec succès, en surveillant et en
adaptant le niveau de QoO si nécessaire. Cette approche réactive permet d’éviter de déployer
des mécanismes de QoO supplémentaires lorsque le graphe d’observations de base satisfait
déjà le SLA.

Prenons comme exemple une requête déployée contenant des contraintes en termes de
QoO avec un niveau de SLA garanti. Une fois déployés, les pipelines d’entrée et de sortie
émettent régulièrement des rapports concernant la QoO actuellement délivrée aux consom-
mateurs. Le pipeline d’entrée fourni des informations concernant le débit des observations
reçues pour chaque requête uniquement tandis que le pipeline de sortie peut fournir des
informations sur n’importe quel attribut de QoO. Afin d’assurer le passage à l’échelle et ne
pas surcharger l’acteur Monitor de la boucle MAPE-K, il est possible de régler le nombre de
rapports à envoyer par unité de temps dans les fichier de configuration de iQAS.

En se basant sur les rapports de QoO reçus, l’acteur Monitor peut émettre des symptômes
si le niveau de QoO ne satisfait pas celui du SLA de la requête. Ces symptômes sont alors
envoyés à l’acteur Analyze qui les conserve pendant un temps donné. Périodiquement, les
symptômes reçus sont analysés afin de déterminer si le nombre maximum de symptômes a
été atteint pour une des requêtes déployées. Lorsque c’est le cas (par exemple si 5 symptômes
“TOO_LOW OBS_RATE” ont été reçus), l’acteur Analyze communique avec le serveur SPARQL
pour trouver un remède approprié. Ce processus fait appel aux ontologies et utilise des
mécanismes d’inférence. En interrogeant l’ontologie QoOnto, l’acteur Analyze est capable de
sélectionner des QoO Pipelines susceptibles d’avoir un effet sur les attributs QoO en question,
permettant d’ajuster le niveau de QoO à celui du SLA.

Dans le cas d’une première adaptation, iQAS effectue une reconfiguration structurelle en
déployant un QoO Pipeline parmi les candidats trouvés. Dans le cas où un QoO Pipeline a
déjà été déployé, iQAS effectue une reconfiguration comportementale qui n’implique pas de
déployer des QoO Pipelines additionnels. Si aucun remède n’a été trouvé, la requête peut être
annulée si le nombre maximal de tentatives a été dépassé.

Une reconfiguration structurelle correspond au déploiement d’un QoO Pipeline addition-
nel juste avant le pipeline de sortie pour une requête déjà déployée. Une reconfiguration
comportementale correspond à un changement de configuration pour un QoO Pipeline spéci-
fique sans changer l’ordre ni la composition du graphe d’observations déployé. Peu importe le
type de reconfiguration, nous avons programmé notre boucle MAPE-K de telle manière que le
système soit capable d’observer son effet durant un temps donné. Ceci est particulièrement
utile afin d’éviter les oscillations et pour évaluer l’adéquation d’un remède déployé. En d’autres
termes, ce mécanisme permet de maintenir le système dans un état plus stable, y compris
durant les phases de reconfiguration.

3.5 Utilisation et Déploiement

3.5.1 Configuration

Avant d’être lancée, iQAS peut être configurée via l’édition de plusieurs fichiers de configu-
ration. Via ces fichiers, les administrateurs peuvent spécifier des paramètres pour l’interface

24

3.5. Utilisation et Déploiement

de programmation (API), le répertoire à scanner pour la découverte des QoO Pipelines, pour
la configuration de MongoDB, pour l’agent de messages Kafka, pour la boucle MAPE-K ainsi
que pour le triple store contenant les ontologies. Une fois spécifiés, ces différents paramètres
ne peuvent pas être changés au cours du temps.

Au contraire, iQAS permet la découverte automatique des capteurs et des QoO Pipelines
pendant son exécution (fonctionnalité plug-and-play). Pour cela, les administrateurs doivent
mettre à jour l’ontologie QoOnto afin de refléter les différentes capteurs et QoO Pipelines
disponibles. Par conséquent, il est de la responsabilité des administrateurs de s’assurer que
toutes les ressources (VSCs et QoO Pipelines) sont correctement décrites afin d’être par la
suite découvertes et correctement utilisées par la plateforme.

3.5.2 Interaction avec iQAS

API RESTful et adresses iQAS expose une API RESTful 7 simple mais puissante permet-
tant de gérer le cycle de vie (création, suppression) des différentes entités considérées par
iQAS (requêtes, capteurs, QoO Pipelines, etc.). Une API RESTful est caractérisée par l’utilisa-
tion de différents verbes HTTP (GET, POST, PUT, PATCH, DELETE) pour l’envoi de requêtes
HTTP (avec un corps optionnel) à une adresse donnée. La combinaison verbe-adresse permet
de spécifier l’opération désirée (par exemple GET /sensors) tandis que le corps de la requête
permet de spécifier des paramètres additionnels propres à l’opération demandée.

Entre autres, l’API de iQAS permet aux applications de soumettre des requêtes, de vérifier
leur statut et de consulter le nom du topic Kafka auquel elles doivent s’abonner si elle veulent
recevoir les observations demandées. La documentation de iQAS fournit une description
détaillée des différentes opérations pouvant être réalisées via l’API. Le Listing 3.1 montre un
exemple corps de requête sous format JSON pouvant être utilisé pour la soumission d’une
nouvelle requête (POST /request).

1 {
2 " application_id " : " weatherForecast " ,
3 " location " : "Toulouse" ,
4 " topic " : "temperature" ,
5 " obs_level " : "INFORMATION" ,
6 "qoo" : {
7 " s l a _ l e v e l " : "GUARANTEED" ,
8 " interested_in " : ["OBS_RATE" , "OBS_ACCURACY"] ,
9 " additional_params " : {

10 "obsRate_min" : "3/ s " ,
11 "age_max" : "150"
12 }
13 }
14 }

Listing 3.1 – Exemple de requête contenant des contraintes QoO soumise à la plateforme iQAS

7. http://www.restapitutorial.com

25

http://www.restapitutorial.com

Chapitre 3. La plateforme iQAS

Interface Graphique Utilisateur Nous avons conçu et développé l’Interface Graphique Uti-
lisateur (Graphical User Interface ou GUI en anglais) en nous basant sur les règles du Material
Design 8. Inventé et promu par Google, le Material Design fait référence à “un système unifié qui
combine théorie, ressources et outils pour la réalisation d’expériences digitales”. La Figure 3.3
montre trois captures d’écran de l’interface Web de iQAS.

(a) Page d’accueil de iQAS

(b) Soumission d’une nouvelle requête (c) Surveillance de la QoO

FIGURE 3.3 – Captures d’écran de l’interface Web de iQAS

Nous avons privilégié l’utilisation de composants issus du Material Design afin d’offrir
une expérience de navigation unifiée quelque soit l’appareil utilisé pour accéder à la GUI de
iQAS (ordinateur de bureau, tablette, téléphone portable). En utilisant la GUI, un utilisateur
peut effectuer de manière plus intuitive les mêmes actions que via l’API (par exemple sou-
mettre une nouvelle requête comme illustré par la Figure 3.3b). Par ailleurs, la GUI offre des
fonctionnalités supplémentaires telles que la surveillance de la QoO en temps réel pour une
requête donnée (voir Figure 3.3c).

8. https://material.io

26

https://material.io

3.5. Utilisation et Déploiement

Topics Kafka Afin de recevoir des observations correspondant aux requêtes qu’ils ont sou-
mises, les consommateurs finaux doivent s’abonner à des topics “puits” Kafka. Ce choix a
été motivé étant donné qu’un grand nombre de clients développés dans des langages de
programmation divers existent pour Kafka. Un inconvénient de cette approche réside dans
le fait que l’utilisation de topics intermédiaires peut introduire de la latence additionnelle
entre le temps où une observation est rendue disponible et le temps où elle est effectivement
consommée par les clients Kafka et, par conséquent, par les applications finales.

Une fois une requête déployée avec succès par iQAS, nous conseillons aux consommateurs
finaux de régulièrement interroger Kafka afin de récupérer les observations au fur et à mesure
qu’elles sont disponibles (avec un mécanisme d’abonnement par exemple). Ceci permet
de limiter la latence bout-en-bout des observations et garantit que la caractérisation QoO
réalisée par iQAS sera toujours d’actualité lorsque les observations seront consommées par les
consommateurs finaux.

3.5.3 Déploiements Possibles pour la Plateforme iQAS

En développant iQAS, nous avons suivi le principe de base de “déployer localement avant de
déployer sur le Cloud” comme spécifié par les bonnes pratiques de notre framework générique.
Au final, par manque de temps, nous avons seulement réalisé un déploiement en local de
notre plateforme.

Cependant, nous sommes convaincus que le déploiement de iQAS selon une approche
micro-services ne requerra que des changements de code mineurs. Très populaires ces der-
niers temps, les architectures micro-services désignent des “architectures développées pour le
Cloud ayant pour but la réalisation de programmes informatiques selon un ensemble de petits
services” [42]. Il a été montré que de telles architectures facilitent les déploiement distribués
et, par conséquent, les déploiement sur le Cloud. En effet, ces deux types de déploiements re-
quièrent généralement de séparer les différents composants/acteurs parmi plusieurs instances
pouvant être aussi bien physiques que virtualisées.

Nous avons anticipé la migration vers cette approche micro-services 1) en nous appuyant
sur une séparation claire des préoccupations et 2) en faisant des choix d’implémentation
appropriés. Par exemple, tous les logiciels tierces utilisés par iQAS (Apache Kafka, Apache
Jena et Fuseki, MongoDB) peuvent être déployés de manière distribuée afin d’améliorer
leur passage à l’échelle. Par ailleurs, la librairie Akka assure la transparence au niveau de
la localisation des acteurs, ce qui permet de distribuer les acteurs sur plusieurs machines
virtuelles/conteneurs/instances. La librairie Akka fournit aussi des APIs pour l’envoi et la
distribution de messages, ce qui veut dire qu’aucune modification de code ne sera nécessaire
pour envoyer des messages à des acteurs distants. Ces messages seront alors encapsulés dans
des datagrammes UDP/TCP avant d’être automatiquement transmis via le réseau par Akka.

27

Chapitre 4
Conclusions et Perspectives

Les principales contributions de cette thèse ont été publiées dans [43, 44, 45, 46, 47].

4.1 Contributions : Systèmes Sensor Webs Adaptatifs basés sur la
QoO

Les premiers Sensor Webs étaient principalement destinés à la surveillance environne-
mentale, traitant principalement des observations reçues de capteurs physiques déployés
sur le terrain. Par la suite, de nouveaux paradigmes, services et cas d’utilisation ont progressi-
vement fait évoluer le paradigme Sensor Web en introduisant de nouvelles problématiques
de recherche. Parmi ces dernières, cette thèse identifie l’intégration, la QoO et l’adaptation
système comme trois défis importants devant être traités au niveau middleware en vue de
simplifier le développement des applications futures. Basée sur un rigoureux état de l’art, cette
thèse de doctorat envisage des Systèmes Sensor Webs Adaptatifs basés sur la QoO (QASWS)
comme une nouvelle génération de middlewares capable de mieux réaliser la vision Sensor
Web dans des environnements complexes et hétérogènes tels que l’IoT.

4.1.1 Framework Générique pour les QASWS

Notre première contribution est un framework générique pour les QASWS. Il a pour but
d’aider les chercheurs lors de la conception de leur propre Sensor Web en leur permettant de
mieux répondre aux problématiques d’intégration, de QoO et d’adaptation système dans les
environnements modernes où des capteurs peuvent être utilisés tels que l’IoT. Nous avons
développé ce framework de manière rigoureuse en nous basant sur le standard international
ISO/IEC/IEEE 42010 afin de le présenter et proposer des descriptions architecturales pouvant,
par la suite, être utilisées en ingénierie logicielle. De la même manière que pour un dévelop-
pement logiciel, nous avons défini des besoins fonctionnels et non-fonctionnels que toute
solution QASWS devrait satisfaire. Ces besoins ont ensuite été utilisés comme principes fonda-
teurs pour la proposition des trois composants de notre framework (Modèle, Architecture et
Bonnes Pratiques de Référence).

28

4.1. Contributions : Systèmes Sensor Webs Adaptatifs basés sur la QoO

Nous avons évalué notre framework en comparant la conformité des composants présen-
tés avec ses besoins généraux initiaux. Pour chaque besoin fonctionnel et non-fonctionnel,
nous avons indiqué quel(s) modèle(s), vue(s) architectural(les) et bonne(s) pratique(s) du
framework pouvaient être les plus à même de le satisfaire. Ce processus de mise en relation a
montré que notre framework générique fournit des outils pour répondre aux problématiques
de recherche identifiées dans cette thèse (intégration, QoO, adaptation système).

Finalement, nous avons comparé notre framework générique par rapport à quatre frame-
works architecturaux majeurs existants (OGC SWE, modèle de référence pour l’IoT de l’ITU-T
IoT, IoT-A ARM ainsi que le modèle de référence pour l’IoT de Cisco). Cette analyse a montré
la pertinence et la complémentarité de notre travail avec les approches existantes. Par ailleurs,
afin de répondre à des besoins non couverts par notre framework tels que la sécurité ou la vie
privée, nous recommandons aux chercheurs d’utiliser notre framework générique pour les
QASWS en conjonction avec d’autres frameworks architecturaux (par exemple l’OGC SWE 2.0)
ou avec d’autres modèles de référence (par exemple le projet FP7 IoT-A) ayant été proposés
pour les Sensor Webs ou pour l’IoT.

4.1.2 La Plateforme iQAS

Notre deuxième contribution est le développement d’un prototype de solution QASWS.
Nommée iQAS, cette solution est une plateforme d’intégration pour l’évaluation de la QoO à
la demande. Nous avons basé son développement sur notre framework générique pour les
QASWS afin d’instancier une implémentation concrète de Sensor Web. Au final, la plateforme
iQAS vise à répondre spécifiquement aux problématiques concernant l’intégration, la QoO
et l’adaptation système. Signalons que la proposition de la plateforme iQAS va bien au delà
d’un simple travail d’ingénierie et qu’elle est entièrement complémentaire de notre framework
générique. Ainsi, elle présente des choix d’implémentation qui n’avaient jusqu’alors pas été
couverts par le framework.

L’évaluation de notre plateforme a été réalisée de plusieurs façons. Tout d’abord, nous
avons montré que, puisqu’elle avait été correctement instanciée à partir de notre framework
générique, iQAS s’inscrivait dans la vision QASWS. En particulier, concernant les besoins
de iQAS, nous avons présenté les différents efforts de développement qui ont été faits afin
d’assurer certains besoins non-fonctionnels tels que l’adaptabilité, la transparence, le passage
à l’échelle, l’extensibilité, l’interopérabilité et la facilité d’utilisation. Par ailleurs, nous avons
créé trois indicateurs (Key Primary Indicators ou KPIs) afin de rendre compte des performances
de notre plateforme. Nous avons ainsi pu évaluer l’impact de iQAS sur la QoO, son débit
maximal ainsi que son temps de réponse tout en faisant varier la configuration des clients
Kafka (producteurs/consommateurs) afin de mieux comprendre la signification de certains
paramètres de configuration. Comme on pouvait s’y attendre, les résultats expérimentaux
montrent que les performances de iQAS sont très étroitement liées à la configuration des
clients Kafka : ceci est cohérent avec le fait que nous avons décidé d’utiliser des topics Kafka
comme buffers intermédiaires. En outre, conformément à la théorie des files d’attente, nous
reconnaissons que des compromis existent entre la latence, le débit et la taille des messages
contenant les observations lorsqu’il s’agît de configurer iQAS. Hormis ces considérations, les
performances de iQAS sont plus que satisfaisantes pour un premier prototype déployé en

29

Chapitre 4. Conclusions et Perspectives

local.
Concernant les applications pratiques de iQAS, nous avons introduit trois scénarios de

déploiement qui expliquent en quoi la QoO peut être une notion importante pour l’améliora-
tion du service global fourni aux utilisateurs finaux. Par la même occasion, nous avons aussi
montré l’importance de considérer les bonnes métriques en présentant des attributs QoO
spécialement définis pour chacun des cas d’utilisation. Nous nous sommes ainsi intéressés à
la précision des observations dans les villes intelligentes, à la fréquence des observations pour
des capteurs virtuels appartenant au Web of Things et, finalement, à l’âge des observations
lorsqu’elles sont collectées de manière décentralisée et pair-à-pair dans des environnements
sinistrés.

4.2 Perspectives

Cette thèse a considéré les Systèmes Sensor Webs Adaptatifs basés sur la QoO (QASWS)
comme une approche permettant de répondre à certaines problématiques récentes liées aux
systèmes basés sur des capteurs. En constante évolution, ce domaine de recherche a montré
être un fascinant terrain d’expérimentations pour l’étude et la promotion de la notion de QoO.
Pour aller plus loin, il est possible d’améliorer nos contributions de plusieurs façons.

4.2.1 Améliorations concernant le Framework Générique pour les QASWS

• Migration vers la nouvelle version de l’ontologie W3C SSN Actuellement, l’ontologie QoOnto
utilise la version SSN-XG de l’ontologie développée par le W3C. Afin d’avoir la même
terminologie que l’OGC, nous prévoyons de migrer vers la nouvelle version de l’ontolo-
gie SSN dès que celle-ci sera disponible. Cette nouvelle version permettra un meilleur
alignement sémantique vis-à-vis des concepts du standard OGC SWE (en particulier
concernant le concept d’Observation) et permettra de supporter plus d’applications et
d’autres cas d’utilisation modernes ayant trait à l’IoT.

• Ajout d’une méthode pas-à-pas pour l’instanciation Avec le recul, nous sommes conscients
que l’instanciation d’un prototype à partir de notre framework générique n’est pas
triviale et nécessite d’être décrite plus en détail. Une idée pourrait être de créer une
méthode à partir des bonnes pratiques de référence afin de créer une procédure pas-
à-pas comprenant plusieurs étapes. Ainsi, chaque étape pourrait correspondre à un
choix technologique important et les bonnes pratiques à mettre en œuvre pourraient
dépendre des choix précédemment effectués par les chercheurs.

• Ajout de recommandations concernant d’autres frameworks Notre framework générique se
concentre principalement sur les aspects liés à l’intégration, à la QoO et à l’adaptation
système afin de permettre le développement de solutions QASWS. Afin de répondre
à davantage de problématiques (dans les domaines de la sécurité, de la vie privée,
etc.), notre framework générique pourrait fournir des recommandations de frameworks
à utiliser pour adresser tel ou tel problème. Basé sur une liste des besoins les plus
importants/courants pour l’IoT, notre framework pourrait présenter une matrice de
couverture avec les différents frameworks à utiliser selon les fonctionnalités souhaitées.

30

4.2. Perspectives

4.2.2 Améliorations concernant la Plateforme iQAS

• Distinction entre capteurs physiques et virtuels/logiques Afin de décrire plus finement les dif-
férentes capacités des capteurs, nous prévoyons de les différencier en fonction de leur
type. Dans cette direction, nous allons continuer à examiner l’état de l’art. En particulier,
la notion de “wrappers” utilisés par le Sensor Web GSN [48] semble être une approche
prometteuse pour fournir différents modèles de VSCs avec des fonctionnalités propres.
Une mise à jour de l’ontologie QoOnto pourra être requise à cette occasion.

• Facilitation de la construction de requêtes iQAS (API) Pour l’instant, toutes les requêtes sou-
mises via l’API doivent contenir un corps de requête respectant le format JSON conte-
nant des paramètres sous la forme clef/valeur. Même si le format JSON est un format po-
pulaire et très largement utilisé, cette façon de faire requiert des utilisateurs de connaître
les différents paramètres pouvant être spécifiés. À cet effet, nous avons pris soin de four-
nir une documentation claire et à jour des différentes fonctionnalités offertes par iQAS.
Cependant, et afin d’aller plus loin, nous souhaitons autoriser la soumission de requêtes
à plusieurs niveaux de granularité suivant le niveau de granularité des observations
demandées. Par exemple, un “SLA Donnée Brutes” pourrait faire référence à un capteur
spécifique tandis qu’un “SLA Informations” pourrait seulement mentionner le lieu et
la propriété d’intérêt. Finalement, un “SLA Connaissances” pourrait faire appel à des
mécanismes de raisonnement basés sur les ontologies afin d’inférer automatiquement
les QoO Pipelines à déployer selon les applications et usages.

• Facilitation de la configuration de iQAS Actuellement, une grande partie de la configuration
de iQAS repose sur des mises à jour manuelles de l’ontologie QoOnto. C’est particuliè-
rement vrai lorsqu’il s’agît d’ajouter ou de supprimer un nouveau capteur, un nouvel
attribut QoO ou un nouveau QoO Pipeline. En ce sens, nous pensons que les wikis sé-
mantiques pourraient aider à configurer plus facilement iQAS. En tant que successeurs
des wikis traditionnels, les wikis sémantiques [49] couplent ontologies et plateformes
web, fournissant une gestion intuitive de la connaissance tout en permettant la colla-
boration entre humains. En s’appuyant sur des wikis sémantiques, la plateforme iQAS
pourraient être configurée simultanément par plusieurs utilisateurs possédant diffé-
rents domaines d’expertise. Par ailleurs, le fait d’avoir une interface web intégrée pour
la configuration pourrait augmenter la facilité d’utilisation de iQAS, en permettant aux
utilisateurs d’explorer et de mettre à jour l’ontologie QoOnto en navigant de page en
page ou en effectuant des requêtes en ligne.

• Amélioration de la fonctionnalité d’adaptation de iQAS Dans cette thèse, nous avons décrit
le rôle central joué par la boucle d’adaptation MAPE-K pour l’adaptation système. Même
si nous avons volontairement choisi de conserver des processus d’adaptation relative-
ment simples, nous avons aussi mentionné qu’il était possible d’améliorer la fonction-
nalité d’adaptation de iQAS. Moyennant peu d’efforts, il est ainsi envisageable d’intégrer
des Réseaux Bayésiens et du raisonnement probabiliste afin d’avoir des stratégies d’adap-
tation plus avancées [32]. Pour l’instant, le comportement de chaque acteur de la boucle
MAPE-K (Monitor, Plan, Analyze and Execute) est codé en dur et, par conséquent, assez
difficile à modifier dynamiquement. Pour pallier à ce problème, une solution pourrait

31

Chapitre 4. Conclusions et Perspectives

être d’utiliser un moteur de règles (comme le logiciel Drools par exemple) avec lequel
les utilisateurs pourraient facilement définir leurs propres règles pour la génération
de symptômes, de RFCs ou d’actions. En outre, les utilisateurs pourraient aussi définir
leurs propres actions à effectuer en fournissant le code source à exécuter (par exemple,
ajuster la fréquence de mesure d’un capteur en utilisant son API).

4.2.3 Paradigmes Transverses d’Intérêt pour la QoO

La notion de QoO est loin d’être spécifique aux capteurs et aux Sensor Webs. Au cours de
cette thèse, nous avons eu l’occasion de découvrir d’autres paradigmes mentionnant la QoO
ou pouvant être utilisés afin de fournir plus de garanties en termes de QoO. En particulier,
nous pensons que trois paradigmes récents sont amenés à jouer un rôle crucial pour la notion
de la QoO dans un futur proche :

• Sensing as a Service Le paradigme du Sensing as a Service (S2aaS) repose sur l’utilisation de
l’infrastructure IoT pour répondre de manière spécifique aux problématiques des villes
intelligentes concernant la collecte et le traitement des données. Nous pensons que le
modèle S2aaS est pertinent lorsqu’il s’agît d’identifier les différentes responsabilités et
rôles des différentes entités impliquées dans le traitement des observations. Il pourrait
donc être appliqué aux Sensor Webs afin d’améliorer le respect des SLAs et la garantie
des contraintes QoO. De plus, ce modèle répond aussi à des besoins en termes de
confiance et de sécurité en s’appuyant sur une autorité centrale capable de délivrer des
certificats.

• Blockchain Le terme “blockchain” fait référence à une technologie de stockage distribuée
qui ne dépend pas d’une entité de contrôle centrale. Par conséquent, une blockchain est
partagée par tous les nœuds qui appartiennent à un même réseau blockchain. Elle est
considérée comme une technologie transparente et sécurisée, dans la mesure où n’im-
porte quel nœud du réseau peut vérifier l’intégrité et la validité de la chaîne toute entière.
Au delà de ses applications dans le domainde de la finance, plusieurs chercheurs ont
cherché à utiliser la blockchain pour répondre à certains enjeux liés à l’IoT [50]. En effet,
la blockchain est, avant toute chose, une façon distribuée de sauvegarder, de partager et
de traiter des données. Puisque l’incertitude des observations est toujours considérée
comme un problème difficile à résoudre dans les Sensor Webs, nous pensons que les
capteurs devraient évaluer par eux-mêmes certains aspects de la QoO. Par exemple,
nous pourrions imaginer qu’une observation doive être vérifiée par un nombre mini-
mum de capteurs avant d’être validée et transmise à un Sensor Web. Une ou plusieurs
blockchains devraient alors être utilisées pour stocker toutes les observations vérifiées
par les capteurs.

• Mobile Edge Computing L’Edge Computing correspond à la faculté d’un système à traiter les
observations proche des sources de données afin d’améliorer l’expérience utilisateur
globale. Cette délocalisation du traitement des observations présente de nombreux
avantages comme la réduction de la latence bout-en-bout et la possibilité de traiter les
observations selon le contexte local par exemple. L’Edge Computing apparaît comme
un mécanisme clef pour la future cinquième génération de réseaux mobiles à venir (5G).

32

4.2. Perspectives

Appliquée aux réseaux cellulaires, l’Edge Computing est appelé le Mobile Edge Com-
puting (MEC). La plupart des cas d’utilisation pour le MEC impliquent du délestage
de tâches vers les appareils finaux, de la transformation de contenu ou des procédés
analytiques issus du Big Data [51]. Fort de ce constat, nous pensons que le MEC est
adapté afin de répondre à certains besoins relatifs à la QoO. En particulier, il pourrait
être utilisé pour améliorer le passage à l’échelle (moins d’observations voyageant dans
le réseau), le temps de réponse (les observations pourraient être mises en cache) et l’in-
teropérabilité (les observations pourraient être encodées localement selon un standard
commun avant d’être transmises) des systèmes Sensor Webs.

33

Bibliographie

[1] A. Bröring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch, S. Liang, and R. Lem-
mens. New Generation Sensor Web Enablement. Sensors, 11(3) :2652–2699, 2011.

[2] L. Atzori, A. Iera, and G. Morabito. The Internet of Things : A survey. Computer Networks,
54(15) :2787–2805, October 2010.

[3] L. Atzori, A. Iera, and G. Morabito. Understanding the Internet of Things : definition,
potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56 :122–140,
March 2017.

[4] P. Mell and T. Grance. The NIST definition of Cloud Computing. 2011.

[5] S. Patidar, D. Rane, and P. Jain. A Survey Paper on Cloud Computing. In Advanced
Computing & Communication Technologies (ACCT), 2012 Second International Conference
on, pages 394–398. IEEE, 2012.

[6] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Sensing as a Service Model
for Smart Cities supported by Internet of Things. Transactions on Emerging Telecommu-
nications Technologies, 25(1) :81–93, 2014.

[7] G. Cugola and A. Margara. Processing flows of information : From data stream to Complex
Event Processing. ACM Computing Surveys (CSUR), 44(3) :15, 2012.

[8] A. B. Bondi. Characteristics of Scalability and Their Impact on Performance. In Procee-
dings of the 2Nd International Workshop on Software and Performance, WOSP ’00, New
York, NY, USA, 2000. ACM.

[9] P. Barnaghi, M. Bermudez-Edo, and R. Tönjes. Challenges for Quality of Data in Smart
Cities. J. Data and Information Quality, 6(2-3) :6 :1–6 :4, June 2015.

[10] D. J. Peuquet. It’s About Time : A Conceptual Framework for the Representation of
Temporal Dynamics in Geographic Information Systems. Annals of the Association of
American Geographers, 84(3) :441–461, September 1994.

34

Bibliographie

[11] L.-J. Zhang, J. Zhang, and H. Cai. Service-Oriented Architecture. Services Computing,
pages 89–113, 2007.

[12] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE intelligent systems,
16(2) :46–53, 2001.

[13] E. Y. Song and K. B. Lee. Sensor Network based on IEEE 1451.0 and IEEE p1451. 2-RS232.
In Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC
2008. IEEE, pages 1728–1733. IEEE, 2008.

[14] D. Moodley and I. Simonis. A New Architecture for the Sensor Web : The SWAP Framework.
In Proceedings of 5th International Semantic Web Conference (ISWC 2006), volume LNCS
4273, Athens, GA, USA, 2006.

[15] S. Ramalingam and L. Mohandas. A Fuzzy Based Sensor Web for Adaptive Prediction Fra-
mework to Enhance the Availability of Web Service. International Journal of Distributed
Sensor Networks, 12(2), 2016.

[16] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. M. S. d. Souza, and V. Trifa.
SOA-Based Integration of the Internet of Things in Enterprise Services. In 2009 IEEE
International Conference on Web Services, pages 968–975, July 2009.

[17] Y. S. Chen and Y. R. Chen. Context-Oriented Data Acquisition and Integration Platform
for Internet of Things. In 2012 Conference on Technologies and Applications of Artificial
Intelligence, pages 103–108, November 2012.

[18] G. Yang, L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. D. Xu, S. Kao-Walter, Q. Chen, and
L. R. Zheng. A Health-IoT Platform Based on the Integration of Intelligent Packaging,
Unobtrusive Bio-Sensor, and Intelligent Medicine Box. IEEE Transactions on Industrial
Informatics, 10(4) :2180–2191, November 2014.

[19] D. Carr. The SIXTH Middleware : sensible sensing for the sensor web. PhD thesis, University
College Dublin, 2015.

[20] J. Bosch. Design Patterns as Language Constucts. 1996.

[21] A. Sheth, C. Henson, and S. Sahoo. Semantic Sensor Web. IEEE Internet Computing, 12
(4) :78–83, July 2008.

[22] X. Wang, X. Zhang, and M. Li. A Survey on Semantic Sensor Web : Sensor Ontology,
Mapping and Query. International Journal of u-and e-Service, Science and Technology, 8
(10) :325–342, 2015.

[23] M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog, and others. The SSN ontology of the W3C semantic
sensor network incubator group. Web semantics : science, services and agents on the World
Wide Web, 17 :25–32, 2012.

35

Bibliographie

[24] International Organization for Standardization. Data quality – Part 140 : Master data :
Exchange of characteristic data : Completeness, 2016. URL https://www.iso.org/

standard/62395.html. Retrieved : 14/12/2017.

[25] Open Geospatial Consortium (OGC). SWE Common Data Model Encoding Standard,
2011. URL http://www.opengeospatial.org/standards/swecommon. Retrieved :
14/12/2017.

[26] International Organization for Standardization. Geographic information – Data quality,
2013. URL https://www.iso.org/standard/32575.html. Retrieved : 14/12/2017.

[27] D. Puiu, P. Barnaghi, R. Tönjes, and others. CityPulse : Large Scale Data Analytics Frame-
work for Smart Cities. IEEE Access, 4 :1086–1108, 2016.

[28] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context Aware Computing
for The Internet of Things : A Survey. IEEE Communications Surveys Tutorials, 16(1) :
414–454, 2014.

[29] A. K. Dey. Understanding and using context. Personal and ubiquitous computing, 5(1) :
4–7, 2001.

[30] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer, 36(1) :
41–50, 2003.

[31] G. M. Lohman and S. S. Lightstone. SMART : Making DB2 (More) Autonomic. In Pro-
ceedings of the 28th International Conference on Very Large Data Bases, VLDB ’02, pages
877–879, Hong Kong, China, 2002. VLDB Endowment.

[32] C. Diop. An autonomic service bus for service-based distributed systems. PhD thesis, 2015.

[33] M. Ben Alaya. Towards interoperability, self-management, and scalability for machine-to-
machine systems. PhD thesis, 2015.

[34] E. Mezghani. Towards Autonomic and Cognitive IoT Systems, Application to Patients’
Treatments Management. PhD thesis, 2016.

[35] ISO/IEC/IEEE. ISO/IEC/IEEE Systems and software engineering – Architecture des-
cription. ISO/IEC/IEEE 42010 :2011(E) (Revision of ISO/IEC 42010 :2007 and IEEE Std
1471-2000), pages 1–46, December 2011.

[36] ISO/IEC/IEEE. ISO/IEC/IEEE 42010 Homepage, 2011. URL http://www.

iso-architecture.org/ieee-1471/index.html. Retrieved : 14/12/2017.

[37] A. Sheth. Internet of Things to Smart IoT Through Semantic, Cognitive, and Perceptual
Computing. IEEE Intelligent Systems, 31(2) :108–112, March 2016.

[38] G. A. Agha. Actors : A Model of Concurrent Computation in Distributed Systems. Technical
report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1985.

36

https://www.iso.org/standard/62395.html
https://www.iso.org/standard/62395.html
http://www.opengeospatial.org/standards/swecommon
https://www.iso.org/standard/32575.html
http://www.iso-architecture.org/ieee-1471/index.html
http://www.iso-architecture.org/ieee-1471/index.html

Bibliographie

[39] D. Kramer. The Java Platform. White Paper, Sun Microsystems, Mountain View, CA, 1996.

[40] N. Garg. Apache Kafka. Packt Publishing Ltd, 2013.

[41] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of Publish/-
Subscribe. ACM Comput. Surv., 35(2) :114–131, 2003.

[42] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices Architecture Enables DevOps :
Migration to a Cloud-Native Architecture. IEEE Software, 33(3) :42–52, May 2016.

[43] A. Auger, E. Exposito, and E. Lochin. A Generic Framework for Quality-based Autonomic
Adaptation within Sensor-based Systems. In Service-Oriented Computing – ICSOC 2016
Workshops : ASOCA, ISyCC, BSCI, and Satellite Events, Banff, AB, Canada, October 10–
13, 2016, Revised Selected Papers, pages 21–32, Banff, CA, 2017. Springer International
Publishing. URL https://doi.org/10.1007/978-3-319-68136-8_2.

[44] A. Auger, E. Exposito, and E. Lochin. iQAS : an Integration Platform for QoI Assessment as
a Service for Smart Cities. In IEEE World Forum on Internet of Things 2016, pages 88–93,
Reston, VA, USA, 2017. URL https://doi.org/10.1109/WF-IoT.2016.7845400.

[45] A. Auger, E. Exposito, and E. Lochin. Sensor Observation Streams Within Cloud-based
IoT Platforms : Challenges and Directions. In 20th ICIN Conference Innovations in Clouds,
Internet and Networks, pages 177–184, Paris, FR, 2017. URL https://doi.org/10.1109/
ICIN.2017.7899407.

[46] A. Auger, E. Exposito, and E. Lochin. Towards the Internet of Everything : Deployment
Scenarios for a QoO-aware Integration Platform. In 2018 IEEE 4th World Forum on
Internet of Things (WF-IoT 2018), pages 504–509, Singapore, Singapore, 2018. (Accepted).

[47] A. Auger, E. Exposito, and E. Lochin. Survey on Quality of Observation within Sensor Web
Systems. IET Wireless Sensor Systems, 7 :163–177(14), December 2017. ISSN 2043-6386.
URL http://dx.doi.org/10.1049/iet-wss.2017.0008.

[48] K. Aberer, M. Hauswirth, and A. Salehi. Middleware support for the Internet of Things. In
Proceedings of 5. GI/ITG KuVS Fachgespraech-Drahtlose Sensornetze, pages 15–19, Berlin,
Germany, September 2006.

[49] S. Schaffert, D. Bischof, T. Bürger, A. Gruber, W. Hilzensauer, and S. Schaffert. Learning
with Semantic Wikis. In 1st Workshop SemWiki2006 : From Wiki to Semantics, Budva,
Montenegro, 2006.

[50] K. Christidis and M. Devetsikiotis. Blockchains and Smart Contracts for the Internet of
Things. IEEE Access, 4 :2292–2303, 2016.

[51] A. Ahmed and E. Ahmed. A survey on Mobile Edge Computing. In 2016 10th International
Conference on Intelligent Systems and Control (ISCO), pages 1–8, January 2016.

37

https://doi.org/10.1007/978-3-319-68136-8_2
https://doi.org/10.1109/WF-IoT.2016.7845400
https://doi.org/10.1109/ICIN.2017.7899407
https://doi.org/10.1109/ICIN.2017.7899407
http://dx.doi.org/10.1049/iet-wss.2017.0008

	Acknowledgments
	Abstract
	Résumé
	List of Publications
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	Introduction
	Context
	Research Problems
	Integration-related Challenges
	Quality of Observation
	System Adaptation

	Existing Work
	Thesis Positioning
	Scientific Contributions
	Dissertation Outline

	Background and State of the Art
	Introduction
	Integration
	Structural Integration
	Semantic Integration
	Scalable Integration

	Quality of Observation
	Quality Dimensions
	Metrics and Quality Attributes
	Popular Ontologies for Sensors and Observations
	QoO Mechanisms and Transformations

	System Adaptation
	Context-Aware Systems
	Autonomic Computing

	Survey of Existing Work
	Methodology
	Relevant Solutions for the Considered Challenges
	Discussion

	Summary of the Chapter

	Generic Framework for QoO-aware Adaptive Sensor Web Systems
	Introduction
	Motivation and Methodology for a new Framework
	Terminology Used
	Limitations of Existing Frameworks
	General Requirements

	QASWS Reference Model
	Functional Model
	Adaptation Model
	Domain Model
	Observation Model

	QASWS Reference Architecture
	Functional View
	Observation View
	Adaptation View
	Deployment View

	QASWS Reference Guidelines
	General Technological Choices
	Architectural Choices
	Observation Formatting and QoO Characterization
	Semantics and Ontologies
	Storage and Observation Retention
	System Adaptation
	Deployment
	Performances and Evaluation

	QASWS Framework Evaluation
	Compliance with General Requirements
	Comparison with Related Work
	Discussion

	Summary of the Chapter

	iQAS: an Integration Platform for Quality of Observation Assessment as a Service
	Introduction
	Motivation for a New Sensor Web Proposal
	Reminder of Existing Sensor Webs
	Existing Commercial Platforms
	Existing Software Products

	Instantiation of our Generic Framework for QASWS
	Methodology Followed
	Use Cases and Specific Requirements for iQAS
	Discussion

	Implementation Choices for the iQAS Platform
	General Approach
	Programming Language and Frameworks
	Persistence and Reasoning
	Discussion

	Design
	iQAS Observation Model
	iQAS Processing Model
	iQAS Adaptation Model
	Discussion

	Implementation
	The iQAS Ecosystem
	Handling New Observation Requests
	Providing System Adaptation
	Discussion

	Usage and Deployment
	Configuring iQAS
	Interacting with iQAS
	QoO Pipeline Development Walk-through
	Discussion on Possible iQAS Deployments

	Summary of the Chapter

	iQAS Evaluation and Deployment Scenarios
	Introduction
	Evaluation of iQAS Design
	Compliance with the QASWS Generic Framework
	iQAS and the Internet of Everything

	Key Primary Indicators for iQAS Performance
	iQAS Overhead
	iQAS Throughput
	iQAS Response Time

	Use Case 1: Smart City
	Motivation
	Scenario and Experimental Results
	Discussion

	Use Case 2: Web of Things
	Motivation
	Scenario and Experimental Results
	Discussion

	Use Case 3: Post-disaster Areas
	Motivation
	Opportunistic Networking and the HINT Network Emulator
	Scenario and Experimental Results
	Discussion

	Evaluation of iQAS Specific Requirements
	Functional Requirements
	Non-functional Requirements
	Discussion

	Summary of the Chapter

	Conclusions and Perspectives
	Contributions: QoO-aware Adaptive Sensor Web Systems
	Generic Framework for QASWS
	The iQAS Platform
	Prerequisites for QASWS Adoption and Use

	Perspectives
	Improvements to the QASWS Generic Framework
	Improvements to the iQAS Platform
	Transverse Paradigms of Relevance for QoO
	QoO Considerations Regarding the Forthcoming IoE

	Appendix: OGC SWE 2.0 Specifications
	Appendix: Legend for the Surveyed Sensor Webs
	Appendix: ISO/IEC/IEEE 42010 Standard - Terms and Concepts
	Appendix: Observations Delivered by the iQAS Platform
	References
	ma_these_def.pdf
	Résumé
	Table des matières
	Introduction Générale
	Introduction
	Contexte
	Problématiques de Recherche
	Problématiques liées à l'Intégration
	Problématiques liées à la Qualité des Observations
	Problématiques liées à l'Adaptation Système

	Approches Existantes
	Contributions Scientifiques

	Framework Générique pour Sensor Webs Adaptatifs basés sur la QoO
	Introduction
	Modèle de Référence pour les QASWS
	Modèle Fonctionnel
	Modèle d'Adaptation
	Modèle de Domaine
	Modèle pour les Observations

	Architecture de Référence pour les QASWS
	Vue Fonctionnelle
	Autres Vues Architecturales

	Bonnes Pratiques de Référence pour les QASWS

	iQAS: une Plateforme d'Intégration pour l'Évaluation de la Qualité des Observations à la Demande
	Introduction
	Instanciation de notre Framework Générique pour QASWS
	Conception
	Implémentation
	Caractérisation de la QoO
	Adaptation Système

	Utilisation et Déploiement
	Configuration
	Interaction avec iQAS
	Déploiements Possibles pour la Plateforme iQAS

	Conclusions et Perspectives
	Contributions: Systèmes Sensor Webs Adaptatifs basés sur la QoO
	Framework Générique pour les QASWS
	La Plateforme iQAS

	Perspectives
	Améliorations concernant le Framework Générique pour les QASWS
	Améliorations concernant la Plateforme iQAS
	Paradigmes Transverses d'Intérêt pour la QoO

	Bibliographie

